Showing 1 - 10 of 128
In this paper we replace the Gaussian errors in the standard Gaussian, linear state space model with stochastic volatility processes. This is called a GSSF-SV model. We show that conventional MCMC algorithms for this type of model are ineffective, but that this problem can be removed by...
Persistent link: https://www.econbiz.de/10005144469
In this paper we replace the Gaussian errors in the standard Gaussian, linear state space model with stochastic volatility processes. This is called a GSSF-SV model. We show that conventional MCMC algorithms for this type of model are ineffective, but that this problem can be removed by...
Persistent link: https://www.econbiz.de/10011256635
This discussion paper led to an article in <I>Statistica Neerlandica</I> (2003). Vol. 57, issue 4, pages 439-469.<P> The linear Gaussian state space model for which the common variance istreated as a stochastic time-varying variable is considered for themodelling of economic time series. The focus of this...</p></i>
Persistent link: https://www.econbiz.de/10011255780
The linear Gaussian state space model for which the common variance is treated as a stochastic time-varying variable is considered for the modelling of economic time series. The focus of this paper is on the simultaneous estimation of parameters related to the stochastic processes of the mean...
Persistent link: https://www.econbiz.de/10005209436
We investigate changes in the time series characteristics of postwar U.S. inflation. In a model-based analysis the conditional mean of inflation is specified by a long memory autoregressive fractionally integrated moving average process and the conditional variance is modelled by a stochastic...
Persistent link: https://www.econbiz.de/10005209535
We investigate changes in the time series characteristics of postwar U.S. inflation. In a model-based analysis the conditional mean of inflation is specified by a long memory autoregressive fractionally integrated moving average process and the conditional variance is modelled by a stochastic...
Persistent link: https://www.econbiz.de/10011256451
Accurate prediction of risk measures such as Value at Risk (VaR) and Expected Shortfall (ES) requires precise estimation of the tail of the predictive distribution. Two novel concepts are introduced that offer a specific focus on this part of the predictive density: the censored posterior, a...
Persistent link: https://www.econbiz.de/10011255481
We propose a new class of observation driven time series models referred to as Generalized Autoregressive Score (GAS) models. The driving mechanism of the GAS model is the scaled score of the likelihood function. This approach provides a unified and consistent framework for introducing...
Persistent link: https://www.econbiz.de/10011255643
This paper investigates the asymptotic properties of the ordinary least squares (OLS) estimator of structural parameters in a stylised macroeconomic model in which agents are boundedly rational and use an adaptive learning rule to form expectations of the endogenous variable. In particular, when...
Persistent link: https://www.econbiz.de/10011255677
Kernel ridge regression is gaining popularity as a data-rich nonlinear forecasting tool, which is applicable in many different contexts. This paper investigates the influence of the choice of kernel and the setting of tuning parameters on forecast accuracy. We review several popular kernels,...
Persistent link: https://www.econbiz.de/10011255762