Showing 1 - 10 of 301
Accurate prediction of risk measures such as Value at Risk (VaR) and Expected Shortfall (ES) requires precise estimation of the tail of the predictive distribution. Two novel concepts are introduced that offer a specific focus on this part of the predictive density: the censored posterior, a...
Persistent link: https://www.econbiz.de/10011255481
This discussion paper resulted in a chapter in: (K. Bocker (Ed.)) 'Rethinking Risk Measurement and Reporting - Volume II: Examples and Applications from Finance', 2010, London: Riskbooks.<P> This paper proposes an up-to-date review of estimation strategies available for the Bayesian inference of...</p>
Persistent link: https://www.econbiz.de/10011255484
Publication in the 'Journal of Business & Economic Statistics' forthcoming.<A> We introduce a new efficient importance sampler for nonlinear non-Gaussian state space models. We propose a general and efficient likelihood evaluation method for this class of models via the combination of numerical and...</a>
Persistent link: https://www.econbiz.de/10011255569
Several Bayesian model combination schemes, including some novel approaches that simultaneously allow for parameter uncertainty, model uncertainty and robust time varying model weights, are compared in terms of forecast accuracy and economic gains using financial and macroeconomic time series....
Persistent link: https://www.econbiz.de/10004964452
This paper puts forward a method to estimate average economic growth, and its associated confidence bounds, which does not require a formal decision on potential unit root properties. The method is based on the analysis of either difference-stationary or trend-stationary time series models,...
Persistent link: https://www.econbiz.de/10005136924
By combining two alternative formulations of a test statistic with two alternative resampling schemes we obtain four different bootstrap tests. In the context of static linear regression models two of these are shown to have serious size and power problems, whereas the remaining two are adequate...
Persistent link: https://www.econbiz.de/10005137131
Several lessons learned from a Bayesian analysis of basic economic time series models by means of the Gibbs sampling algorithm are presented. Models include the Cochrane-Orcutt model for serial correlation, the Koyck distributed lag model, the Unit Root model, the Instrumental Variables model...
Persistent link: https://www.econbiz.de/10005504906
We introduce a new efficient importance sampler for nonlinear non-Gaussian state space models. By combining existing numerical and Monte Carlo integration methods, we obtain a general and efficient likelihood evaluation method for this class of models. Our approach is based on the idea that only...
Persistent link: https://www.econbiz.de/10008873337
A class of adaptive sampling methods is introduced for efficient posterior and predictive simulation. The proposed methods are robust in the sense that they can handle target distributions that exhibit non-elliptical shapes such as multimodality and skewness. The basic method makes use of...
Persistent link: https://www.econbiz.de/10008838540
This paper proposes an up-to-date review of estimation strategies available for the Bayesian inference of GARCH-type models. The emphasis is put on a novel efficient procedure named AdMitIS. The methodology automatically constructs a mixture of Student-t distributions as an approximation to the...
Persistent link: https://www.econbiz.de/10008838590