Showing 1 - 2 of 2
We analyse the drivers of European Power Exchange (EPEX) wholesale electricity prices between 2012 and early 2022 using machine learning. The agnostic random forest approach that we use is able to reduce in-sample root mean square errors (RMSEs) by around 50% when compared to a standard linear...
Persistent link: https://www.econbiz.de/10014242405
This study analyses oil price movements through the lens of an agnostic random forest model, which is based on 1,000 regression trees. It shows that this highly disciplined, yet flexible computational model reduces in-sample root mean square errors (RMSEs) by 65% relative to a standard linear...
Persistent link: https://www.econbiz.de/10014243437