Showing 1 - 5 of 5
We propose the Heterogeneous Autoregressive (HAR) model for the estimation and prediction of realized correlations. We construct a realized correlation measure where both the volatilities and the covariances are computed from tick-by-tick data. As for the realized volatility, the presence of...
Persistent link: https://www.econbiz.de/10005797693
We propose a flexible GARCH-type model for the prediction of volatility in financial time series. The approach relies on the idea of using multivariate B-splines of lagged observations and volatilities. Estimation of such a B-spline basis expansion is constructed within the likelihood framework...
Persistent link: https://www.econbiz.de/10005797706
We propose a new semi-parametric model for the implied volatility surface, which incorporates machine learning algorithms. Given a starting model, a tree-boosting algorithm sequentially minimizes the residuals of observed and estimated implied volatility. To overcome the poor predicting power of...
Persistent link: https://www.econbiz.de/10005453978
We propose a new multivariate GARCH model with Dynamic Conditional Correlations that extends previous models by admitting multivariate thresholds in conditional volatilities and correlations. The model estimation is feasible in large dimensions and the positive deniteness of the conditional...
Persistent link: https://www.econbiz.de/10005453982
We propose a multivariate nonparametric technique for generating reliable shortterm historical yield curve scenarios and confidence intervals. The approach is based on a Functional Gradient Descent (FGD) estimation of the conditional mean vector and covariance matrix of a multivariate interest...
Persistent link: https://www.econbiz.de/10005696741