Showing 1 - 10 of 1,525
This paper revisits a number of data-rich prediction methods, like factor models, Bayesian ridge regression and forecast combinations, which are widely used in macroeconomic forecasting, and compares these with a lesser known alternative method: partial least squares regression. Under the...
Persistent link: https://www.econbiz.de/10010284202
This paper provides a review which focuses on forecasting using statistical/econometric methods designed for dealing with large data sets.
Persistent link: https://www.econbiz.de/10010284149
A Bayesian nonparametric predictive model is introduced to construct time-varying weighted combinations of a large set of predictive densities. A clustering mechanism allocates these densities into a smaller number of mutually exclusive subsets. Using properties of the Aitchinson's geometry of...
Persistent link: https://www.econbiz.de/10012143868
In this paper, we empirically assess the extent to which early release inefficiency and definitional change affect prediction precision. In particular, we carry out a series of ex-ante prediction experiments in order to examine: the marginal predictive content of the revision process, the...
Persistent link: https://www.econbiz.de/10010282871
We propose a new approach to forecasting the term structure of interest rates, which allows to efficiently extract the information contained in a large panel of yields. In particular, we use a large Bayesian Vector Autoregression (BVAR) with an optimal amount of shrinkage towards univariate AR...
Persistent link: https://www.econbiz.de/10010286274
Rationality of early release data is typically tested using linear regressions. Thus, failure to reject the null does not rule out the possibility of nonlinear dependence. This paper proposes two tests that have power against generic nonlinear alternatives. A Monte Carlo study shows that the...
Persistent link: https://www.econbiz.de/10010282830
In this paper we propose a strategy for forecasting the term structure of interest rates which may produce significant gains in predictive accuracy. The key idea is to use the restrictions implied by Affine Term Structure Models (ATSM) on a vector autoregression (VAR) as prior information rather...
Persistent link: https://www.econbiz.de/10010284219
This paper addresses the notion that many fractional I(d) processes may fall into the ?empty box? category, as discussed in Granger (1999). We present ex ante forecasting evidence based on an updated version of the absolute returns series examined by Ding, Granger and Engle (1993) that suggests...
Persistent link: https://www.econbiz.de/10010276818
Using a Bayesian framework this paper provides a multivariate combination approach to prediction based on a distributional state space representation of predictive densities from alternative models. In the proposed approach the model set can be incomplete. Several multivariate time-varying...
Persistent link: https://www.econbiz.de/10012143763
We propose new forecast combination schemes for predicting turning points of business cycles. The combination schemes deal with the forecasting performance of a given set of models and possibly providing better turning point predictions. We consider turning point predictions generated by...
Persistent link: https://www.econbiz.de/10012143792