Showing 1 - 10 of 390
This paper extends the existing fully parametric Bayesian literature on stochastic volatility to allow for more general return distributions. Instead of specifying a particular distribution for the return innovation, we use nonparametric Bayesian methods to flexibly model the skewness and...
Persistent link: https://www.econbiz.de/10010292240
This paper proposes a Bayesian nonparametric modeling approach for the return distribution in multivariate GARCH models. In contrast to the parametric literature, the return distribution can display general forms of asymmetry and thick tails. An infinite mixture of multivariate normals is given...
Persistent link: https://www.econbiz.de/10010292242
In this paper, we extend the parametric, asymmetric, stochastic volatility model (ASV), where returns are correlated with volatility, by flexibly modeling the bivariate distribution of the return and volatility innovations nonparametrically. Its novelty is in modeling the joint, conditional,...
Persistent link: https://www.econbiz.de/10010292350
In this paper, we use Bayesian nonparametric learning to estimate the skill of actively managed mutual funds and also to estimate the population distribution for this skill. A nonparametric hierarchical prior, where the hyperprior distribution is unknown and modeled with a Dirichlet process...
Persistent link: https://www.econbiz.de/10012030285
Change point models using hierarchical priors share in the information of each regime when estimating the parameter values of a regime. Because of this sharing, hierarchical priors have been very successful when estimating the parameter values of short-lived regimes and predicting the...
Persistent link: https://www.econbiz.de/10012030268
We introduce a Bayesian approach to predictive density calibration and combination that accounts for parameter uncertainty and model set incompleteness through the use of random calibration functionals and random combination weights. Building on the work of Ranjan and Gneiting (2010) and...
Persistent link: https://www.econbiz.de/10012143859
This paper discusses the evaluation problem using observational data when the timing of treatment is an outcome of a stochastic process. We show that, without additional assumptions, it is not possible to estimate the average treatment effect and treatment on the treated. It is, however,...
Persistent link: https://www.econbiz.de/10010321721
Often, a treatment and the outcome of interest are characterized by the moment they occur, and these moments are realizations of stochastic processes with dependent unobserved determinants. We develop a simple and intuitive method for inference on the treatment effect. The method can be...
Persistent link: https://www.econbiz.de/10010327268
We reanalyze the effects of a Danish active labour market program social experiment, that included a range of sub-treatments, including monitoring, job search assistance and training. Previous studies have shown that the overall effect of the experiment is positive. We apply newly developed...
Persistent link: https://www.econbiz.de/10010273909
This paper considers the definition and identification of treatment effects on conditional transition probabilities. We show that even under sequential random assignment only the instantaneous average treatment effect is point identified. Because treated and control units drop out at different...
Persistent link: https://www.econbiz.de/10010273912