Showing 1 - 10 of 531
In recent years, numerous volatility-based derivative products have been engineered. This has led to interest in constructing conditional predictive densities and confidence intervals for integrated volatility. In this paper, we propose nonparametric kernel estimators of the aforementioned...
Persistent link: https://www.econbiz.de/10010282869
In recent years, numerous volatility-based derivative products have been engineered. This has led to interest in constructing conditional predictive densities and confidence intervals for integrated volatility. In this paper, we propose nonparametric kernel estimators of the aforementioned...
Persistent link: https://www.econbiz.de/10010266344
In recent years, numerous volatility-based derivative products have been engineered. This has led to interest in constructing conditional predictive densities and confidence intervals for integrated volatility. In this paper, we propose nonparametric estimators of the aforementioned quantities,...
Persistent link: https://www.econbiz.de/10010282862
This paper surveys the techniques of wavelets analysis and the associated methods of denoising. The Discrete Wavelet Transform and its undecimated version, the Maximum Overlapping Discrete Wavelet Transform, are described. The methods of wavelets analysis can be used to show how the frequency...
Persistent link: https://www.econbiz.de/10010284181
This paper extends the existing fully parametric Bayesian literature on stochastic volatility to allow for more general return distributions. Instead of specifying a particular distribution for the return innovation, we use nonparametric Bayesian methods to flexibly model the skewness and...
Persistent link: https://www.econbiz.de/10010292240
This paper proposes a Bayesian nonparametric modeling approach for the return distribution in multivariate GARCH models. In contrast to the parametric literature, the return distribution can display general forms of asymmetry and thick tails. An infinite mixture of multivariate normals is given...
Persistent link: https://www.econbiz.de/10010292242
In this paper, we extend the parametric, asymmetric, stochastic volatility model (ASV), where returns are correlated with volatility, by flexibly modeling the bivariate distribution of the return and volatility innovations nonparametrically. Its novelty is in modeling the joint, conditional,...
Persistent link: https://www.econbiz.de/10010292350
This paper concentrates on comparing estimation and forecasting ability of Quasi-Maximum Likelihood (QML) and Support Vector Machines (SVM) for financial data. The financial series are fitted into a family of Asymmetric Power ARCH (APARCH) models. As the skewness and kurtosis are common...
Persistent link: https://www.econbiz.de/10013208610
Many statistical applications require the forecast of a random variable of interest over several periods into the future. The sequence of individual forecasts, one period at a time, is called a path forecast, where the term path refers to the sequence of individual future realizations of the...
Persistent link: https://www.econbiz.de/10010316854
We introduce a Bayesian approach to predictive density calibration and combination that accounts for parameter uncertainty and model set incompleteness through the use of random calibration functionals and random combination weights. Building on the work of Ranjan and Gneiting (2010) and...
Persistent link: https://www.econbiz.de/10012143859