Showing 1 - 3 of 3
In the presence of outliers in a dataset, a least squares estimation may not be the most adequate choice to get representative results. Indeed estimations could have been excessively infuenced even by a very limited number of atypical observations. In this article, we propose a new Hausman-type...
Persistent link: https://www.econbiz.de/10005264559
In the robust statistics literature, a wide variety of models have been devel- oped to cope with outliers in a rather large number of scenarios. Nevertheless, a recurrent problem for the empirical implementation of these estimators is that optimization algorithms generally do not perform well...
Persistent link: https://www.econbiz.de/10010548024
In this paper, we follow the same logic as in Hausman (1978) to create a testing procedure that checks for the presence of outliers by comparing a regression estimator that is robust to outliers (S-estimator), with another that is more e¢ cient but a¤ected by them. Some simulations are...
Persistent link: https://www.econbiz.de/10009369456