Showing 1 - 10 of 18
The management and monitoring of very large portfolios of financial assets are routine for many individuals and organizations. The two most widely used models of conditional covariances and correlations in the class of multivariate GARCH models are BEKK and DCC. It is well known that BEKK...
Persistent link: https://www.econbiz.de/10010907410
Modelling covariance structures is known to suffer from the curse of dimensionality. In order to avoid this problem for forecasting, the authors propose a new factor multivariate stochastic volatility (fMSV) model for realized covariance measures that accommodates asymmetry and long memory....
Persistent link: https://www.econbiz.de/10010907411
The purpose of the paper is to discuss ten things potential users should know about the limits of the Dynamic Conditional Correlation (DCC) representation for estimating and forecasting time-varying conditional correlations. The reasons given for caution about the use of DCC include the...
Persistent link: https://www.econbiz.de/10010907413
This note discusses some aspects of the paper by Hu and Tsay (2014), “Principal Volatility Component Analysis”. The key issues are considered, and are also related to existing conditional covariance and correlation models. Some caveats are given about multivariate models of time-varying...
Persistent link: https://www.econbiz.de/10010907420
The papers in this special issue of Mathematics and Computers in Simulation are substantially revised versions of the papers that were presented at the 2011 Madrid International Conference on “Risk Modeling and Management” (RMM2011). The papers cover the following topics: currency hedging...
Persistent link: https://www.econbiz.de/10010907434
Most multivariate variance or volatility models suffer from a common problem, the “curse of dimensionality”. For this reason, most are fitted under strong parametric restrictions that reduce the interpretation and flexibility of the models. Recently, the literature has focused on...
Persistent link: https://www.econbiz.de/10009651876
In the last 15 years, several Multivariate GARCH (MGARCH) models have appeared in the literature. Recent research has begun to examine MGARCH specifications in terms of their out-of-sample forecasting performance. In this paper, we provide an empirical comparison of a set of models, namely BEKK,...
Persistent link: https://www.econbiz.de/10009643473
DAMGARCH is a new model that extends the VARMA-GARCH model of Ling and McAleer (2003) by introducing multiple thresholds and time-dependent structure in the asymmetry of the conditional variances. Analytical expressions for the news impact surface implied by the new model are also presented....
Persistent link: https://www.econbiz.de/10008465226
In the last 15 years, several Multivariate GARCH (MGARCH) models have appeared in the literature. The two most widely known and used are the Scalar BEKK model of Engle and Kroner (1995) and Ding and Engle (2001), and the DCC model of Engle (2002). Some recent research has begun to examine MGARCH...
Persistent link: https://www.econbiz.de/10008465227
Most multivariate variance models suffer from a common problem, the “curse of dimensionality”. For this reason, most are fitted under strong parametric restrictions that reduce the interpretation and flexibility of the models. Recently, the literature has focused on multivariate models with...
Persistent link: https://www.econbiz.de/10008552167