Showing 1 - 10 of 11
In this paper, we extend the parametric, asymmetric, stochastic volatility model (ASV), where returns are correlated with volatility, by flexibly modeling the bivariate distribution of the return and volatility innovations nonparametrically. Its novelty is in modeling the joint, conditional,...
Persistent link: https://www.econbiz.de/10009534187
This paper proposes a Bayesian nonparametric modeling approach for the return distribution in multivariate GARCH models. In contrast to the parametric literature, the return distribution can display general forms of asymmetry and thick tails. An infinite mixture of multivariate normals is given...
Persistent link: https://www.econbiz.de/10009565827
A probabilistic forecasting method to predict thunderstorms in the European Eastern Alps is developed. A statistical model links lightning occurrence from the ground-based ALDIS detection network to a large set of direct and derived variables from a numerical weather prediction (NWP) system. The...
Persistent link: https://www.econbiz.de/10011762424
The relationship between risk and return is one of the most studied topics in finance. The majority of the literature is based on a linear, parametric relationship between expected returns and conditional volatility. This paper models the contemporaneous relationship between market excess...
Persistent link: https://www.econbiz.de/10010365633
P(enalized)-splines and fractional polynomials (FPs) have emerged as powerful smoothing techniques with increasing popularity in several fields of applied research. Both approaches provide considerable flexibility, but only limited comparative evaluations of the performance and properties of the...
Persistent link: https://www.econbiz.de/10009736613
Although building operating charges have turned out to be a major determinant of profitability for real estate investments, there is a noticeable lack of reports or studies that analyze these costs with state-of-the-art statistical techniques. Specifically, past studies usually assume linear...
Persistent link: https://www.econbiz.de/10009736614
Bayesian methods have become increasingly popular in the past two decades. With the constant rise of computational power even very complex models can be estimated on virtually any modern computer. Moreover, interest has shifted from conditional mean models to probabilistic distributional models...
Persistent link: https://www.econbiz.de/10011699413
In this paper, we use Bayesian nonparametric learning to estimate the skill of actively managed mutual funds and also to estimate the population distribution for this skill. A nonparametric hierarchical prior, where the hyperprior distribution is unknown and modeled with a Dirichlet process...
Persistent link: https://www.econbiz.de/10011980531
Change point models using hierarchical priors share in the information of each regime when estimating the parameter values of a regime. Because of this sharing, hierarchical priors have been very successful when estimating the parameter values of short-lived regimes and predicting the...
Persistent link: https://www.econbiz.de/10011798456
Persistent link: https://www.econbiz.de/10008658099