Showing 1 - 10 of 72
Extended logistic regression is a recent ensemble calibration method that extends logistic regression to provide full continuous probability distribution forecasts. It assumes conditional logistic distributions for the (transformed) predictand and fits these using selected predictand category...
Persistent link: https://www.econbiz.de/10010197616
To achieve well calibrated probabilistic forecasts, ensemble forecasts often need to be statistically post-processed. One recent ensemble-calibration method is extended logistic regression which extends the popular logistic regression to yield full probability distribution forecasts. Although...
Persistent link: https://www.econbiz.de/10009787084
Non-homogeneous regression is often used to statistically post-process ensemble forecasts. Usually only ensemble forecasts of the predictand variable are used as input but other potentially useful information sources are ignored. Although it is straightforward to add further input variables,...
Persistent link: https://www.econbiz.de/10011434081
Statistical post-processing of ensemble predictions is usually adjusted to a particular lead time so that several models must be fitted to forecast multiple lead times. To increase the coherence between lead times, we propose to use standardized anomalies instead of direct observations and...
Persistent link: https://www.econbiz.de/10011554831
Raw ensemble forecasts display large errors in predicting precipitation amounts and its forecast uncertainty, especially in mountainous regions where local e.ects are often not captured. Therefore, statistical post-processing is typically applied to obtain automatically corrected weather...
Persistent link: https://www.econbiz.de/10011542308
Flexible spatio-temporal models are widely used to create reliable and accurate estimates for precipitation climatologies. Most models are based on square root transformed monthly or annual means, where a normal distribution seems to be appropriate. This assumption becomes invalid on a daily...
Persistent link: https://www.econbiz.de/10011447417
To post-process ensemble predictions to a particular location, often statistical methods are used, especially in complex terrain such as the Alps. When expanded to several stations, the post-processing has to be repeated at every station individually thus losing information about spatial...
Persistent link: https://www.econbiz.de/10011449375
Accurate and high-resolution snowfall and fresh snow forecasts are important for a range of economic sectors as well as for the safety of people and infrastructure, especially in mountainous regions. In this article a new hybrid statistical postprocessing method is proposed, which combines...
Persistent link: https://www.econbiz.de/10011813349
Non-homogeneous regression models are widely used to statistically post-process numerical ensemble weather prediction models. Such regression models are capable of forecasting full probability distributions and correct for ensemble errors in the mean and variance. To estimate the corresponding...
Persistent link: https://www.econbiz.de/10011762435
Results of many atmospheric science applications are processed graphically using colors to encode certain parts of the information. Colors should (1) allow humans to process more information, (2) guide the viewer to the most important information, (3) represent the data appropriately without...
Persistent link: https://www.econbiz.de/10010224744