Showing 1 - 6 of 6
A new bandwidth selection rule that uses different bandwidths for the local linear regression estimators on the left and the right of the cut-off point is proposed for the sharp regression discontinuity estimator of the mean program impact at the cut-off point. The asymptotic mean squared error...
Persistent link: https://www.econbiz.de/10011445747
A new bandwidth selection method for the fuzzy regression discontinuity estimator is proposed. The method chooses two bandwidths simultaneously, one for each side of the cut-off point by using a criterion based on the estimated asymptotic mean square error taking into account a second-order bias...
Persistent link: https://www.econbiz.de/10011445759
Cross-validation is the most common data-driven procedure for choosing smoothing parameters in nonparametric regression. For the case of kernel estimators with iid or strong mixing data, it is well-known that the bandwidth chosen by crossvalidation is optimal with respect to the average squared...
Persistent link: https://www.econbiz.de/10011445799
We consider the problem of choosing two bandwidths simultaneously for estimating the difference of two functions at given points. When the asymptotic approximation of the mean squared error (AMSE) criterion is used, we show that minimisation problem is not well-defined when the sign of the...
Persistent link: https://www.econbiz.de/10010318701
We develop two new methods for selecting the penalty parameter for the e1-penalized high-dimensional M-estimator, which we refer to as the analytic and bootstrap-after-cross-validation methods. For both methods, we derive nonasymptotic error bounds for the corresponding e1-penalized M-estimator...
Persistent link: https://www.econbiz.de/10013253002
We develop two new methods for selecting the penalty parameter for the l1 -penalized high-dimensional M-estimator, which we refer to as the analytic and bootstrap-aftercross-validation methods. For both methods, we derive nonasymptotic error bounds for the corresponding l1 -penalized M-estimator...
Persistent link: https://www.econbiz.de/10012621158