Showing 1 - 5 of 5
Here we present an expository, general analysis of valid post-selection or post-regularization inference about a low-dimensional target parameter in the presence of a very high-dimensional nuisance parameter which is estimated using selection or regularization methods. Our analysis provides a...
Persistent link: https://www.econbiz.de/10011594345
In this article the package High-dimensional Metrics (hdm) is introduced. It is a collection of statistical methods for estimation and quantification of uncertainty in high-dimensional approximately sparse models. It focuses on providing confidence intervals and significance testing for...
Persistent link: https://www.econbiz.de/10011594346
In this note, we offer an approach to estimating structural parameters in the presence of many instruments and controls based on methods for estimating sparse high-dimensional models. We use these high-dimensional methods to select both which instruments and which control variables to use. The...
Persistent link: https://www.econbiz.de/10011445719
Graphical models have become a very popular tool for representing dependencies within a large set of variables and are key for representing causal structures. We provide results for uniform inference on high-dimensional graphical models with the number of target parameters d being possible much...
Persistent link: https://www.econbiz.de/10012146381
Due to the increasing availability of high-dimensional empirical applications in many research disciplines, valid simultaneous inference becomes more and more important. For instance, high-dimensional settings might arise in economic studies due to very rich data sets with many potential...
Persistent link: https://www.econbiz.de/10012146382