Showing 1 - 10 of 10
Economic data are often generated by stochastic processes that take place in continuous time, though observations may occur only at discrete times. For example, electricity and gas consumption take place in continuous time. Data generated by a continuous time stochastic process are called...
Persistent link: https://www.econbiz.de/10011941449
Economic data are often generated by stochastic processes that take place in continuous time, though observations may occur only at discrete times. For example, electricity and gas consumption take place in continuous time. Data generated by a continuous time stochastic process are called...
Persistent link: https://www.econbiz.de/10011941452
Economic data are often generated by stochastic processes that take place in continuous time, though observations may occur only at discrete times. For example, electricity and gas consumption take place in continuous time. Data generated by a continuous time stochastic process are called...
Persistent link: https://www.econbiz.de/10012621144
We develop two new methods for selecting the penalty parameter for the e1-penalized high-dimensional M-estimator, which we refer to as the analytic and bootstrap-after-cross-validation methods. For both methods, we derive nonasymptotic error bounds for the corresponding e1-penalized M-estimator...
Persistent link: https://www.econbiz.de/10013253002
We develop two new methods for selecting the penalty parameter for the l1 -penalized high-dimensional M-estimator, which we refer to as the analytic and bootstrap-aftercross-validation methods. For both methods, we derive nonasymptotic error bounds for the corresponding l1 -penalized M-estimator...
Persistent link: https://www.econbiz.de/10012621158
We study a longitudinal data model with nonparametric regression functions that may vary across the observed subjects. In a wide range of applications, it is natural to assume that not every subject has a completely different regression function. We may rather suppose that the observed subjects...
Persistent link: https://www.econbiz.de/10011941432
We investigate a nonparametric panel model with heterogeneous regression functions. In a variety of applications, it is natural to impose a group structure on the regression curves. Specifically, we may suppose that the observed individuals can be grouped into a number of classes whose members...
Persistent link: https://www.econbiz.de/10011445714
In this paper, we study nonparametric models allowing for locally stationary regressors and a regression function that changes smoothly over time. These models are a natural extension of time series models with time-varying coefficients. We introduce a kernel-based method to estimate the...
Persistent link: https://www.econbiz.de/10010288320
Central limit theorems are developed for instrumental variables estimates of linear and semi-parametric partly linear regression models for spatial data. General forms of spatial dependenceand heterogeneity in explanatory variables and unobservable disturbances are permitted. We discuss...
Persistent link: https://www.econbiz.de/10010288343
Nonparametric regression with spatial, or spatio-temporal, data is considered. The conditional mean of a dependent variable, given explanatory ones, is a nonparametric function, while the conditional covariance reflects spatial correlation. Conditional heteroscedasticity is also allowed, as well...
Persistent link: https://www.econbiz.de/10010288370