Showing 1 - 4 of 4
The method of sieves has been widely used in estimating semiparametric and nonparametric models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we...
Persistent link: https://www.econbiz.de/10010288325
In this paper, we derive a rate of convergence of the Lasso estimator when the penalty parameter Lambda for the estimator is chosen using K-fold cross-validation; in particular, we show that in the model with Gaussian noise and under fairly general assumptions on the candidate set of values of...
Persistent link: https://www.econbiz.de/10011594357
In this note, we characterize the semiparametric efficiency bound for a class of semi- parametric models in which the unknown nuisance functions are identified via nonparametric conditional moment restrictions with possibly non-nested or over-lapping conditioning sets, and the finite dimensional...
Persistent link: https://www.econbiz.de/10010318691
Following the seminal paper by Altonji and Segal (1996), empirical studies have widely embraced equal or diagonal weighting in minimum distance estimation to mitigate the finite-sample bias caused by sampling errors in the weighting matrix. This paper introduces a new weighting scheme that...
Persistent link: https://www.econbiz.de/10014480406