Showing 1 - 10 of 24
Inference using difference-in-differences with clustered data requires care. Previous research has shown that t tests based on a cluster-robust variance estimator (CRVE) severely over-reject when there are few treated clusters, that different variants of the wild cluster bootstrap can...
Persistent link: https://www.econbiz.de/10011428007
Inference based on cluster-robust standard errors is known to fail when the number of clusters is small, and the wild cluster bootstrap fails dramatically when the number of treated clusters is very small. We propose a family of new procedures called the sub- cluster wild bootstrap. In the case...
Persistent link: https://www.econbiz.de/10011528395
Cluster-robust inference is widely used in modern empirical work in economics and many other disciplines. The key unit of observation is the cluster. We propose measures of "high-leverage" clusters and "influential" clusters for linear regression models. The measures of leverage and partial...
Persistent link: https://www.econbiz.de/10013169182
We provide new and computationally attractive methods, based on jackknifing by cluster, to obtain cluster-robust variance matrix estimators (CRVEs) for linear regres- sion models estimated by least squares. These estimators have previously been com- putationally infeasible except for small...
Persistent link: https://www.econbiz.de/10013172440
The cluster robust variance estimator (CRVE) relies on the number of clusters being large. The precise meaning of 'large' is ambiguous, but a shorthand 'rule of 42' has emerged in the literature. We show that this rule depends crucially on the assumption of equal-sized clusters. Monte Carlo...
Persistent link: https://www.econbiz.de/10009781104
Many empirical projects are well suited to incorporating a linear difference-in-differences research design. While estimation is straightforward, reliable inference can be a challenge. Past research has not only demonstrated that estimated standard errors are biased dramatically downwards in...
Persistent link: https://www.econbiz.de/10009782111
Persistent link: https://www.econbiz.de/10012483166
Methods for cluster-robust inference are routinely used in economics and many other disciplines. However, it is only recently that theoretical foundations for the use of these methods in many empirically relevant situations have been developed. In this paper, we use these theoretical results to...
Persistent link: https://www.econbiz.de/10012494221
Persistent link: https://www.econbiz.de/10012499095
We study a cluster-robust variance estimator (CRVE) for regression models with clustering in two dimensions that was proposed in Cameron, Gelback, and Miller (2011). We prove that this CRVE is consistent and yields valid inferences under precisely stated assumptions about moments and cluster...
Persistent link: https://www.econbiz.de/10011722260