Showing 1 - 10 of 205
Deep learning has substantially advanced the state of the art in computer vision, natural language processing, and other fields. The paper examines the potential of deep learning for exchange rate forecasting. We systematically compare long short- term memory networks and gated recurrent units...
Persistent link: https://www.econbiz.de/10012827850
This paper features an analysis of major currency exchange rate movements in relation to the US dollar, as constituted in US dollar terms. Euro, British pound, Chinese yuan, and Japanese yen are modelled using a variety of non-linear models, including smooth transition regression models,...
Persistent link: https://www.econbiz.de/10011378229
This paper features an analysis of major currency exchange rate movements in relation to the US dollar, as constituted in US dollar terms. Euro, British pound, Chinese yuan, and Japanese yen are modelled using a variety of non-linear models, including smooth transition regression models,...
Persistent link: https://www.econbiz.de/10011443686
Persistent link: https://www.econbiz.de/10014504269
Predicting default probabilities is important for firms and banks to operate successfully and to estimate their specific risks. There are many reasons to use nonlinear techniques for predicting bankruptcy from financial ratios. Here we propose the so called Support Vector Machine (SVM) to...
Persistent link: https://www.econbiz.de/10005861245
Graphical data representation is an important tool for model selection in bankruptcy analysis since the problem is highly non-linear and its numericalrepresentation is much less transparent. In classical rating models a convenientrepresentation of ratings in a closed form is possible reducing...
Persistent link: https://www.econbiz.de/10005854715
The interdependence, dynamics and riskiness of financial institutions are the key features frequently tackled in financial econometrics. We propose a Tail Event driven Network Quantile Regression (TENQR) model which addresses these three aspects. More precisely, our framework captures the risk...
Persistent link: https://www.econbiz.de/10012941580
This paper proposes a rating methodology that is based on a non-linear classification method, the support vector machine, and a non-parametric technique for mapping rating scores into probabilities of default. We give an introduction to underlying statistical models and represent the results of...
Persistent link: https://www.econbiz.de/10012989283
The paper features an analysis of causal relations between the VIX, S&P500, and the realised volatility (RV) of the S&P500 sampled at 5 minute intervals, plus the application of an Artificial Neural Network (ANN) model to forecast the VIX. Causal relations are analysed using the recently...
Persistent link: https://www.econbiz.de/10012917306
Graphical data representation is an important tool for model selection in bankruptcy analysis since the problem is highly non-linear and its numerical representation is much less transparent. In classical rating models a convenient representation of ratings in a closed form is possible reducing...
Persistent link: https://www.econbiz.de/10012966231