Showing 1 - 10 of 166
In this paper, we clarify the relations between the existing sets of regularity conditions for convergence rates of nonparametric indirect regression (NPIR) and nonparametric instrumental variables (NPIV) regression models. We establish minimax risk lower bounds in mean integrated squared error...
Persistent link: https://www.econbiz.de/10010318567
In this paper, we clarify the relations between the existing sets of regularity conditions for convergence rates of nonparametric indirect regression (NPIR) and nonparametric instrumental variables (NPIV) regression models. We establish minimax risk lower bounds in mean integrated squared error...
Persistent link: https://www.econbiz.de/10012773378
In this paper, we clarify the relations between the existing sets of regularity conditions for convergence rates of nonparametric indirect regression (NPIR) and nonparametric instrumental variables (NPIV) regression models. We establish minimax risk lower bounds in mean integrated squared error...
Persistent link: https://www.econbiz.de/10005087361
<p>In this paper, we clarify the relations between the existing sets of regularity conditions for convergence rates of nonparametric indirect regression (NPIR) and nonparametric instrumental variables (NPIV) regression models. We establish minimax risk lower bounds in mean integrated squared error...</p>
Persistent link: https://www.econbiz.de/10005811446
We show that spline and wavelet series regression estimators for weakly dependent regressors attain the optimal uniform (i.e. sup-norm) convergence rate (n= log n)..p=(2p+d) of Stone (1982), where d is the number of regressors and p is the smoothness of the regression function. The optimal rate...
Persistent link: https://www.econbiz.de/10011445708
We establish the consistency and asymptotic normality for a class of estimators that are linear combinations of a set of √ n-consistent estimators whose cardinality increases with sample size. A special case of our framework corresponds to the conditional moment restriction and the implied...
Persistent link: https://www.econbiz.de/10010288299
We establish the consistency and asymptotic normality for a class of estimators that are linear combinations of a set of √n– consistent estimators whose cardinality increases with sample size. A special case of our framework corresponds to the conditional moment restriction and the implied...
Persistent link: https://www.econbiz.de/10009620338
We show that spline and wavelet series regression estimators for weakly dependent regressors attain the optimal uniform (i.e. sup-norm) convergence rate (n= log n)..p=(2p+d) of Stone (1982), where d is the number of regressors and p is the smoothness of the regression function. The optimal rate...
Persistent link: https://www.econbiz.de/10010458629
This paper considers semiparametric two-step GMM estimation and inference with weakly dependent data, where unknown nuisance functions are estimated via sieve extremum estimation in the first step. We show that although the asymptotic variance of the second-step GMM estimator may not have a...
Persistent link: https://www.econbiz.de/10013019447
The method of sieves has been widely used in estimating semiparametric and nonparametric models. In this paper, we first provide a general theory on the asymptotic normality of plug-in sieve M estimators of possibly irregular functionals of semi/nonparametric time series models. Next, we...
Persistent link: https://www.econbiz.de/10009649696