Showing 1 - 10 of 168
An early development in testing for causality (technically, Granger non-causality) in the conditional variance (or volatility) associated with financial returns, was the portmanteau statistic for non-causality in variance of Cheng and Ng (1996). A subsequent development was the Lagrange...
Persistent link: https://www.econbiz.de/10011586709
The purpose of the paper is to show that univariate GARCH is not a special case of multivariate GARCH, specifically the Full BEKK model, except under parametric restrictions on the off-diagonal elements of the random coefficient autoregressive coefficient matrix, provides the regularity...
Persistent link: https://www.econbiz.de/10011662513
Persistently high negative covariances between risky assets and hedging instruments are intended to mitigate against risk and subsequent financial losses. In the event of having more than one hedging instrument, multivariate covariances need to be calculated. Optimal hedge ratios are unlikely to...
Persistent link: https://www.econbiz.de/10012611132
In order to hedge efficiently, persistently high negative covariances or, equivalently, correlations, between risky assets and the hedging instruments are intended to mitigate against financial risk and subsequent losses. If there is more than one hedging instrument, multivariate covariances and...
Persistent link: https://www.econbiz.de/10012611137
An early development in testing for causality (technically, Granger non-causality) in the conditional variance (or volatility) associated with financial returns was the portmanteau statistic for non-causality in the variance of Cheng and Ng (1996). A subsequent development was the Lagrange...
Persistent link: https://www.econbiz.de/10011755368
An early development in testing for causality (technically, Granger non-causality) in the conditional variance (or volatility) associated with financial returns, was the portmanteau statistic for non-causality in variance of Cheng and Ng (1996). A subsequent development was the Lagrange...
Persistent link: https://www.econbiz.de/10011556246
The purpose of the paper is to (i) show that univariate GARCH is not a special case of multivariate GARCH, specifically the Full BEKK model, except under parametric restrictions on the off-diagonal elements of the random coefficient autoregressive coefficient matrix, that are not consistent with...
Persistent link: https://www.econbiz.de/10012953102
The purpose of the paper is to (i) show that univariate GARCH is not a special case of multivariate GARCH, specifically the Full BEKK model, except under parametric restrictions on the off-diagonal elements of the random coefficient autoregressive coefficient matrix, that are not consistent with...
Persistent link: https://www.econbiz.de/10012925684
DAMGARCH extends the VARMA-GARCH model of Ling and McAleer (2003) by introducing multiple thresholds and time-dependent structure in the asymmetry of the conditional variances. DAMGARCH models the shocks affecting the conditional variances on the basis of an underlying multivariate distribution....
Persistent link: https://www.econbiz.de/10012720446
The purpose of the paper is to show that univariate GARCH is not a special case of multivariate GARCH, specifically the Full BEKK model, except under parametric restrictions on the off-diagonal elements of the random coefficient autoregressive coefficient matrix, provides the regularity...
Persistent link: https://www.econbiz.de/10011587639