Showing 1 - 10 of 27
Consider a simple two-state risk with equal probabilities for the two states. In particular, assume that the random wealth variable Xi dominates Yi via ith-order stochastic dominance for i = M,N. We show that the 50-50 lottery [XN + YM, YN + XM] dominates the lottery [XN + XM, YN + YM] via (N +...
Persistent link: https://www.econbiz.de/10010264492
This paper examines preferences towards particular classes of lottery pairs. We show how concepts such as prudence and temperance can be fully characterized by a preference relation over these lotteries. If preferences are defined in an expected-utility framework with differentiable utility, the...
Persistent link: https://www.econbiz.de/10010271070
Persistent link: https://www.econbiz.de/10000843042
Persistent link: https://www.econbiz.de/10003311829
Consider a simple two-state risk with equal probabilities for the two states. In particular, assume that the random wealth variable Xi dominates Yi via ith-order stochastic dominance for i = M,N. We show that the 50-50 lottery [XN + YM, YN + XM] dominates the lottery [XN + XM, YN + YM] via (N +...
Persistent link: https://www.econbiz.de/10003790970
Persistent link: https://www.econbiz.de/10003899348
Persistent link: https://www.econbiz.de/10003592031
Persistent link: https://www.econbiz.de/10003686757
Persistent link: https://www.econbiz.de/10003506300
Persistent link: https://www.econbiz.de/10003856251