Showing 1 - 10 of 491
general approaches: (i) an empirical analysis of layering fraud cases and the accompanying deviation in market variables, and … provide researchers and regulators with the foundation of a general analytic framework to understand and model layering fraud …
Persistent link: https://www.econbiz.de/10012891797
A Hidden Markov Model (HMM) is used to model the VIX (the Cboe Volatility Index). A 4- state Gaussian mixture is fitted to the VIX price history from 1990 to 2022. Using a growing window of training data, the price of the S&P500 is predicted and two trading algorithms are presented, based on the...
Persistent link: https://www.econbiz.de/10014356167
. Finally, we provide all algorithms in the open source software JBendge for the solution and estimation of a general class of … models. -- Dynamic Stochastic General Equilibrium (DSGE) Models ; Baye- sian Time Series Econometrics ; Curse of …
Persistent link: https://www.econbiz.de/10003636133
The focus of this article is using dynamic correlation models for the calculation of minimum variance hedge ratios between pairs of assets. Finding an optimal hedge requires not only knowledge of the variability of both assets, but also of the co-movement between the two assets. For this...
Persistent link: https://www.econbiz.de/10011372522
We present a model for hourly electricity load forecasting based on stochastically time-varying processes that are designed to account for changes in customer behaviour and in utility production efficiencies. The model is periodic: it consists of different equations and different parameters for...
Persistent link: https://www.econbiz.de/10011373810
An early development in testing for causality (technically, Granger non-causality) in the conditional variance (or volatility) associated with financial returns, was the portmanteau statistic for non-causality in variance of Cheng and Ng (1996). A subsequent development was the Lagrange...
Persistent link: https://www.econbiz.de/10011556246
The Reversible Jump Markov Chain Monte Carlo (RJMCMC) method can enhance Bayesian DSGE estimation by sampling from a posterior distribution spanning potentially nonnested models with parameter spaces of different dimensionality. We use the method to jointly sample from an ARMA process of unknown...
Persistent link: https://www.econbiz.de/10010503919
The predictive likelihood is of particular relevance in a Bayesian setting when the purpose is to rank models in a forecast comparison exercise. This paper discusses how the predictive likelihood can be estimated for any subset of the observable variables in linear Gaussian state-space models...
Persistent link: https://www.econbiz.de/10010412361
Vector autoregressions with Markov-switching parameters (MS-VARs) fit the data better than do their constant-parameter predecessors. However, Bayesian inference for MS-VARs with existing algorithms remains challenging. For our first contribution, we show that Sequential Monte Carlo (SMC)...
Persistent link: https://www.econbiz.de/10011499604
Divergent priors are improper when defined on unbounded supports. Bartlett's paradox has been taken to imply that using improper priors results in ill-defined Bayes factors, preventing model comparison by posterior probabilities. However many improper priors have attractive properties that...
Persistent link: https://www.econbiz.de/10011382697