Showing 1 - 10 of 140
Leading economic indicators have a long tradition in forecasting future economic activity. Recent developments, however, suggest that there is scope for adding extensions to the methodology of forecasting major economic fluctuations. In this paper, the author tries to develop a new model, which...
Persistent link: https://www.econbiz.de/10005051862
Data drain and data uncertainties for rival units affect the reliability and effectiveness of strategic plans for individual operational units. This study introduces a stochastic, multi-stage, optimization technique for short-term forecasting that intends to assist policy makers in developing...
Persistent link: https://www.econbiz.de/10011259245
This paper aims to explore the forecasting accuracy of RON/USD exchange rate structural models with monetary fundamentals. I used robust regression approach for constructing robust neural models less sensitive to contamination with outliers and I studied its predictability on 1 to 6-month...
Persistent link: https://www.econbiz.de/10011265554
The least squares estimation method as well as other ordinary estimation method for regression models can be severely affected by a small number of outliers, thus providing poor out-of-sample forecasts. This paper suggests a robust regression approach,based on the S-estimation method, to...
Persistent link: https://www.econbiz.de/10005008478
This study compares the performance of different Artificial Neural Networks models for tourist demand forecasting in a multiple-output framework. We test the forecasting accuracy of three different types of architectures: a multi-layer perceptron network, a radial basis function network and an...
Persistent link: https://www.econbiz.de/10010775223
This study compares the performance of different Artificial Neural Networks models for tourist demand forecasting in a multiple-output framework. We test the forecasting accuracy of three different types of architectures: a multi-layer perceptron network, a radial basis function network and an...
Persistent link: https://www.econbiz.de/10010775250
This paper aims to compare the performance of different Artificial Neural Networks techniques for tourist demand forecasting. We test the forecasting accuracy of three different types of architectures: a multi-layer perceptron, a radial basis function and an Elman network. We also evaluate the...
Persistent link: https://www.econbiz.de/10010710595
This paper aims to compare the performance of different Artificial Neural Networks techniques for tourist demand forecasting. We test the forecasting accuracy of three different types of architectures: a multi-layer perceptron, a radial basis function and an Elman network. We also evaluate the...
Persistent link: https://www.econbiz.de/10010710606
This study attempts to improve the forecasting accuracy of tourism demand by using the existing common trends in tourist arrivals form all visitor markets to a specific destination in a multiple-input multiple-output (MIMO) structure. While most tourism forecasting research focuses on univariate...
Persistent link: https://www.econbiz.de/10011123668
This study aims to analyze the effects of data pre-processing on the performance of forecasting based on neural network models. We use three different Artificial Neural Networks techniques to forecast tourist demand: a multi-layer perceptron, a radial basis function and an Elman neural network....
Persistent link: https://www.econbiz.de/10011124425