Showing 1 - 10 of 11,045
We present a road map for effective application of Bayesian analysis of a class of well-known dynamic econometric models by means of the Gibbs sampling algorithm. Members belonging to this class are the Cochrane-Orcutt model for serial correlation, the Koyck distributed lag model, the Unit Root...
Persistent link: https://www.econbiz.de/10010731767
Several lessons learned from a Bayesian analysis of basic economic time series models by means of the Gibbs sampling algorithm are presented. Models include the Cochrane-Orcutt model for serial correlation, the Koyck distributed lag model, the Unit Root model, the Instrumental Variables model...
Persistent link: https://www.econbiz.de/10005504906
Several lessons learned from a Bayesian analysis of basic economic time series models by means of the Gibbs sampling algorithm are presented. Models include the Cochrane-Orcutt model for serial correlation, the Koyck distributed lag model, the Unit Root model, the Instrumental Variables model...
Persistent link: https://www.econbiz.de/10011256846
Several lessons learnt from a Bayesian analysis of basic macroeconomic time series models are presented for the situation where some model parameters have substantial posterior probability near the boundary of the parameter region. This feature refers to near-instability within dynamic models,...
Persistent link: https://www.econbiz.de/10010731830
This paper presents the R package bayesGARCH which provides functions for the Bayesian estimation of the parsimonious but effective GARCH(1,1) model with Student-t innovations. The estimation procedure is fully automatic and thus avoids the time-consuming and difficult task of tuning a sampling...
Persistent link: https://www.econbiz.de/10005015589
which avoids difficult and time consuming tuning of MCMC strategies. The AdMitIS methodology is illustrated with an …
Persistent link: https://www.econbiz.de/10008498470
process. Flexible alternatives are Markov-switching GARCH and change-point GARCH models. They require estimation by MCMC … essential for determining the number of regimes or change-points. We solve the problem by using particle MCMC, a technique …
Persistent link: https://www.econbiz.de/10010615163
We present a road map for effective application of Bayesian analysis of a class of well-known dynamic econometric models by means of the Gibbs sampling algorithm. Members belonging to this class are the Cochrane-Orcutt model for serial correlation, the Koyck distributed lag model, the Unit Root...
Persistent link: https://www.econbiz.de/10005450858
Chain Monte Carlo (MCMC) and Gibbs sampler technique is used to estimate a Bayesian Vector Autoregressive Model of the IFS …
Persistent link: https://www.econbiz.de/10011114113
Growth rate data that are collected incompletely in cross-sections is a quite frequent problem. Chow and Lin (1971) have developed a method for predicting unobserved disaggregated time series and we propose an extension of the procedure for completing cross-sectional growth rates similar to the...
Persistent link: https://www.econbiz.de/10010904374