Showing 1 - 10 of 562
Semiparametric estimates of long memory seem useful in the analysis of long financial time series because they are consistent under much broader conditions than parametric estimates. However, recent large sample theory for semiparametric estimates forbids conditional heteroscedasticity. We show...
Persistent link: https://www.econbiz.de/10005670795
A valid asymptotic expansion for the covariance of functions of multivariate normal vectors is applied to approximate autovariances of time series generated by nonlinear transformation of Gaussian latent variates, and nonlinear functions of these, with special reference to long memory stochastic...
Persistent link: https://www.econbiz.de/10005670798
Several semiparametric estimates of the memory parameter in standard long memory time series are now available. They consider only local behaviour of the spectrum near zero frequency, about which the spectrum is symmetric. However, long-range dependence can appear as a spectral pole at any...
Persistent link: https://www.econbiz.de/10005670821
We introduce a nonlinear model of stochastic volatility within the class of ?product type? models. It allows different degrees of dependence for the ?raw? series and for the ?squared? series, for instance implying weak dependence in the former and long memory in the latter. We discuss its main...
Persistent link: https://www.econbiz.de/10005310353
There is frequently interest in testing that a scalar or vector time series is I(0), possibly after first- differencing or other detrending, while the I(0) assumption is also taken for granted in autocorrelation-consistent variance estimation. We propose a test for I(0) against fractional...
Persistent link: https://www.econbiz.de/10005310358
In a number of econometric models, rules of large-sample inference require a consistent estimate of f(0), where f (?) is the spectral density matrix of yt = ut?xt, for covariance stationary vectors ut, xt. Typically yt is allowed to have nonparametric autocorrelation, and smoothing is used in...
Persistent link: https://www.econbiz.de/10005310359
We discuss models that impart a form of long memory in raw time series xt or instantaneous functions thereof, in particular . on the basis of a linear or nonlinear model. The capacity of linear models for xt to imply long-memory in nonlinear functions of xt is discussed. Empirical observation...
Persistent link: https://www.econbiz.de/10005310367
A central limit theorem is given for certain weighted sums of a covariance stationary process, assuming it is linear in martingale differences, but without any restriction on its spectrum. We apply the result to kernel nonparametric fixed-design regression, giving a single central limit theorem...
Persistent link: https://www.econbiz.de/10005310374
A general limit theorem is established for time series regression estimates which include generalized least squares, in the presence of long range dependence in both errors and stochastic regressors. The setting and results differ significantly from earlier work on regression with long range...
Persistent link: https://www.econbiz.de/10005310380
There exist several estimators of the memory parameter in long-memory time series models with mean µ and the spectrum specified only locally near zero frequency. In this paper we give a lower bound for the rate of convergence of any estimator of the memory parameter as a function of the degree...
Persistent link: https://www.econbiz.de/10005797502