Showing 1 - 10 of 100
Local polynomial regression is widely used for nonparametric regression. However, the efficiency of least squares (LS) based methods is adversely affected by outlying observations and heavy tailed distributions. On the other hand, the least absolute deviation (LAD) estimator is more robust, but...
Persistent link: https://www.econbiz.de/10011042049
Persistent link: https://www.econbiz.de/10005390521
In the context of a heteroscedastic nonparametric regression model, we develop a test for the null hypothesis that a subset of the predictors has no influence on the regression function. The test uses residuals obtained from local polynomial fitting of the null model and is based on a test...
Persistent link: https://www.econbiz.de/10011116237
In this paper, we study three different types of estimates for the noise-to signal ratios in a general stochastic regression setup. The locally linear and locally quadratic regression estimators serve as the building blocks in our approach. Under the assumption that the observations are strictly...
Persistent link: https://www.econbiz.de/10011126613
<Para ID="Par1">This paper is concerned about robust comparison of two regression curves. Most of the procedures in the literature are least-squares-based methods with local polynomial approximation to nonparametric regression. However, the efficiency of these methods is adversely affected by outlying...</para>
Persistent link: https://www.econbiz.de/10011240917
This paper is concerned with composite quantile regression for single-index models. Under mild conditions, we show that the linear composite quantile regression offers a consistent estimate of the index parameter vector. With a root-n consistent estimate of the index vector, the unknown link...
Persistent link: https://www.econbiz.de/10010871471
For over a decade, nonparametric modelling has been successfully applied to study nonlinear structures in financial time series. It is well known that the usual nonparametric models often have less than satisfactory performance when dealing with more than one lag. When the mean has an additive...
Persistent link: https://www.econbiz.de/10010983636
Motivated by the first-differencing method for linear panel data models, we propose a class of iterative local polynomial estimators for nonparametric dynamic panel data models with or without exogenous regressors. The estimators utilize the additive structure of the first-differenced...
Persistent link: https://www.econbiz.de/10011052280
Estimating equations have found wide popularity recently in parametric problems, yielding consistent estimators with asymptotically valid inferences obtained via the sandwich formula. Motivated by a problem in nutritional epidemiology, we use estimating equations to derive nonparametric...
Persistent link: https://www.econbiz.de/10010956402
In many regression applications both the independent and dependent variables are measured with error. When this happens, conventional parametric and nonparametric regression techniques are no longer valid. We consider two different nonparametric techniques, regression splines and kernel...
Persistent link: https://www.econbiz.de/10010956490