Davis, Mark - In: Finance and Stochastics 2 (1997) 1, pp. 19-28
For a Markov process $x_t$, the forward measure $P^T$ over the time interval $[0,T]$ is defined by the Radon-Nikodym derivative $dP^T/dP = M\exp(-\int_0^Tc(x_s)ds)$, where $c$ is a given non-negative function and $M$ is the normalizing constant. In this paper, the law of $x_t$ under the forward...