Showing 1 - 10 of 1,420
Since 2010, the client base of online-trading service providers has grown significantly. Such companies enable small investors to access the stock market at advantageous rates. Because small investors buy and sell stocks in moderate amounts, they should consider fixed transaction costs, integral...
Persistent link: https://www.econbiz.de/10010949947
In the CRR model we introduce a transaction cost structure which covers piecewise proportional, fixed and constant costs. For a general utility function we formulate the problem of maximizing the expected utility of terminal wealth as a Markov control problem. An existence result is given and...
Persistent link: https://www.econbiz.de/10010999748
Portfolio optimization problems on a finite time horizon under proportional transaction costs are considered. The objective is to maximize the expected utility of the terminal wealth. The ensuing non-smooth time-dependent Hamilton–Jacobi–Bellman equation is solved by regularization and the...
Persistent link: https://www.econbiz.de/10010999928
Persistent link: https://www.econbiz.de/10010866543
We consider the problem of maximizing an expected utility function of n assets, such as the mean-variance or power-utility function. Associated with a change in an asset's holdings from its current or target value is a transaction cost. This cost must be accounted for in practical problems. A...
Persistent link: https://www.econbiz.de/10009208894
In the CRR model we introduce a transaction cost structure which covers piecewise proportional, fixed and constant costs. For a general utility function we formulate the problem of maximizing the expected utility of terminal wealth as a Markov control problem. An existence result is given and...
Persistent link: https://www.econbiz.de/10010759341
Portfolio optimization problems on a finite time horizon under proportional transaction costs are considered. The objective is to maximize the expected utility of the terminal wealth. The ensuing non-smooth time-dependent Hamilton–Jacobi–Bellman equation is solved by regularization and the...
Persistent link: https://www.econbiz.de/10010759519
We consider an agent who invests in a stock and a money market in order to maximize the asymptotic behaviour of expected utility of the portfolio market price in the presence of proportional transaction costs. The assumption that the portfolio market price is a geometric Brownian motion and the...
Persistent link: https://www.econbiz.de/10005462676
We investigate a portfolio optimization problem for an agent who invests in two assets, a risk-free and a risky asset modeled by a geometric Brownian motion. The investor faces both fixed and proportional transaction costs and liquidity constraints. His objective is to maximize the expected...
Persistent link: https://www.econbiz.de/10010826188
Portfolio theory covers different approaches to the construction of a portfolio offering maximum expected returns for a given level of risk tolerance where the goal is to find the optimal investment rule. Each investor has a certain utility for money which is reflected by the choice of a utility...
Persistent link: https://www.econbiz.de/10008675006