Showing 1 - 10 of 30
Persistent link: https://www.econbiz.de/10005395756
Persistent link: https://www.econbiz.de/10005532755
In this paper, we implement a multi-variate extension of Dybvig (1988) Payoff Distribution Model that can be used to replicate not only the marginal distribution of most hedge fund returns but also their dependence with other asset classes. In addition to proposing ways to overcome the hedging...
Persistent link: https://www.econbiz.de/10012706109
Persistent link: https://www.econbiz.de/10007330857
Copulas are extensively used for dependence modeling. In many cases the data does not reveal how the dependence can be modeled using a particular parametric copula. Nonparametric copulas do not share this problem since they are entirely data based. This paper proposes nonparametric estimation of...
Persistent link: https://www.econbiz.de/10008521080
The Gaussian kernel density estimator is known to have substantial problems for bounded random variables with high density at the boundaries. For independent and identically distributed data, several solutions have been put forward to solve this boundary problem. In this paper, we propose the...
Persistent link: https://www.econbiz.de/10008484592
Persistent link: https://www.econbiz.de/10005104598
We propose a new nonparametric estimator for the density function of multivariate bounded data. As frequently observed in practice, the variables may be partially bounded (e.g., nonnegative) or completely bounded (e.g., in the unit interval). In addition, the variables may have a point mass. We...
Persistent link: https://www.econbiz.de/10005065413
In this paper we consider the nonparametric estimation for a density and hazard rate function for right censored -mixing survival time data using kernel smoothing techniques. Since survival times are positive with potentially a high concentration at zero, one has to take into account the bias...
Persistent link: https://www.econbiz.de/10005042900
Copulas are extensively used for dependence modeling. In many cases the data does not reveal how the dependence can be modeled using a particular parametric copula. Nonparametric copulas do not share this problem since they are entirely data based. This paper proposes nonparametric estimation of...
Persistent link: https://www.econbiz.de/10005043150