Showing 1 - 10 of 31
We study the existence problem of a zero point of a function defined on a finite set of elements of the integer lattice of the n-dimensional Euclidean space. It is assumed that the set is integrally convex, which implies that the convex hull of the set can be subdivided in simplices such that...
Persistent link: https://www.econbiz.de/10014206228
Tucker's well-known combinatorial lemma states that for any given symmetric triangulation of the n-dimensional unit cube and for any integer labeling that assigns to each vertex of the triangulation a label from the set {1,2,...n,-1,-2,....-n} with the property that antipodal vertices on the...
Persistent link: https://www.econbiz.de/10014222902
Persistent link: https://www.econbiz.de/10003807125
Persistent link: https://www.econbiz.de/10003807167
Tucker's well-known combinatorial lemma states that for any given symmetric triangulation of the n-dimensional unit cube and for any integer labeling that assigns to each vertex of the triangulation a label from the set {1,2,...n,-1,-2,....-n} with the property that antipodal vertices on the...
Persistent link: https://www.econbiz.de/10011373836
Persistent link: https://www.econbiz.de/10011337990
In this paper an algorithm is proposed to find an integral solution of (nonlinear) complementarity problems. The algorithm starts with a nonnegative integral point and generates a unique sequence of adjacent integral simplices of varying dimension. Conditions are stated under which the algorithm...
Persistent link: https://www.econbiz.de/10011343323
In this paper we present two general results on the existence of a discrete zero point of a function from the n-dimensional integer lattice Zn to the n-dimensional Euclidean space Rn. Under two different boundary conditions, we give a constructive proof using a combinatorial argument based on a...
Persistent link: https://www.econbiz.de/10011346458
We study the existence problem of a zero point of a function defined on a finite set of elements of the integer lattice of the n-dimensional Euclidean space. It is assumed that the set is integrally convex, which implies that the convex hull of the set can be subdivided in simplices such that...
Persistent link: https://www.econbiz.de/10011378347
We extend Kohlberg and Mertens' (1986) structure theorem on the Nash correspondence to show that its graph is not only homeomorphic to the underlying space of games, but that the homeomorphism extends to the ambient space of games times strategies, thus implying the graph is unknotted. This has...
Persistent link: https://www.econbiz.de/10014066520