Showing 1 - 10 of 98
Network models represent a useful tool to describe the complex set of financial relationships among heterogeneous firms in the system. In this paper, we propose a new semiparametric model for temporal multilayer causal networks with both intra- and inter-layer connectivity. A Bayesian model with...
Persistent link: https://www.econbiz.de/10013241977
The purpose of this paper is the construction of an early warning indicator for systemic risk using entropy measures. The analysis is based on the cross-sectional distribution of marginal systemic risk measures such as Marginal Expected Shortfall, Delta CoVaR and network connectedness. These...
Persistent link: https://www.econbiz.de/10011277161
The purpose of this paper is the construction of an early warning indicator for systemic risk using entropy measures. The analysis is based on the cross-sectional distribution of marginal systemic risk measures such as Marginal Expected Shortfall, Delta CoVaR and network connectedness. These...
Persistent link: https://www.econbiz.de/10013022947
This paper extends the classic factor-based asset pricing model by including network linkages in linear factor models. We assume that the network linkages are exogenously provided. This extension of the model allows a better understanding of the causes of systematic risk and shows that (i)...
Persistent link: https://www.econbiz.de/10011598484
This paper extends the classic factor-based asset pricing model by including network linkages in linear factor models. We assume that the network linkages are exogenously provided. This extension of the model allows a better understanding of the causes of systematic risk and shows that (i)...
Persistent link: https://www.econbiz.de/10012963394
This paper extends the classic factor-based asset pricing model by including network linkages in linear factor models. We assume that the network linkages are exogenously provided. This extension of the model allows a better understanding of the causes of systematic risk and shows that (i)...
Persistent link: https://www.econbiz.de/10011598385
Using a Bayesian framework this paper provides a multivariate combination approach to prediction based on a distributional state space representation of predictive densities from alternative models. In the proposed approach the model set can be incomplete. Several multivariate time-varying...
Persistent link: https://www.econbiz.de/10010325748
We summarize the general combination approach by Billio et al. [2010]. In the combination model the weights follow logistic autoregressive processes, change over time and their dynamics are possible driven by the past forecasting performances of the predictive densities. For illustrative...
Persistent link: https://www.econbiz.de/10010326049
We propose a multivariate combination approach to prediction based on a distributional state space representation of the weights belonging to a set of Bayesian predictive densities which have been obtained from alternative models. Several specifications of multivariate time-varying weights are...
Persistent link: https://www.econbiz.de/10010326138
We propose a Bayesian combination approach for multivariate predictive densities which relies upon a distributional state space representation of the combination weights. Several specifications of multivariate time-varying weights are introduced with a particular focus on weight dynamics driven...
Persistent link: https://www.econbiz.de/10010326141