Showing 1 - 10 of 48
A popular approach to perform inference on a target parameter in the presence of nuisance parameters is to construct estimating equations that are orthogonal to the nuisance parameters, in the sense that their expected first derivative is zero. Such first-order orthogonalization may, however,...
Persistent link: https://www.econbiz.de/10015193974
Many studies use matched employer-employee data to estimate a statistical model of earnings determination where log-earnings are expressed as the sum of worker effects, firm effects, covariates, and idiosyncratic error terms. Estimates based on this model have produced two influential yet...
Persistent link: https://www.econbiz.de/10013394334
We study identification in a binary choice panel data model with a single predetermined binary covariate (i.e., a covariate sequentially exogenous conditional on lagged outcomes and covariates). The choice model is indexed by a scalar parameter θ, whereas the distribution of unit-specific...
Persistent link: https://www.econbiz.de/10014302517
In this paper we use the enhanced consumption data in the Panel Survey of Income Dynamics (PSID) from 2005-2017 to explore the transmission of income shocks to consumption. We build on the nonlinear quantile framework introduced in Arellano, Blundell and Bonhomme (2017). Our focus is on the...
Persistent link: https://www.econbiz.de/10014480421
We study identification in a binary choice panel data model with a single predetermined binary covariate (i.e., a covariate sequentially exogenous conditional on lagged outcomes and covariates). The choice model is indexed by a scalar parameter θ, whereas the distribution of unit-specific...
Persistent link: https://www.econbiz.de/10014480540
Many approaches to estimation of panel models are based on an average or integrated likelihood that assigns weights to different values of the individual effects. Fixed effects, random effects, and Bayesian approaches all fall in this category. We provide a characterization of the class of...
Persistent link: https://www.econbiz.de/10010318579
We propose a framework for estimation and inference when the model may be misspecified. We rely on a local asymptotic approach where the degree of misspecification is indexed by the sample size. We construct estimators whose mean squared error is minimax in a neighborhood of the reference model,...
Persistent link: https://www.econbiz.de/10014536882
We introduce a class of quantile regression estimators for short panels. Our framework covers static and dynamic autoregressive models, models with general predetermined regressors, and models with multiple individual effects. We use quantile regression as a flexible tool to model the...
Persistent link: https://www.econbiz.de/10011445750
We develop a new quantile-based panel data framework to study the nature of income persistence and the transmission of income shocks to consumption. Log-earnings are the sum of a general Markovian persistent component and a transitory innovation. The persistence of past shocks to earnings is...
Persistent link: https://www.econbiz.de/10011445768
We propose a framework for estimation and inference about the parameters of an economic model and predictions based on it, when the model may be misspecified. We rely on a local asymptotic approach where the degree of misspecification is indexed by the sample size. We derive formulas to...
Persistent link: https://www.econbiz.de/10011941538