Showing 1 - 10 of 107
In high-dimensional vector autoregressive (VAR) models, it is natural to have large number of predictors relative to the number of observations, and a lack of efficiency in estimation and forecasting. In this context, model selection is a difficult issue and standard procedures may often be...
Persistent link: https://www.econbiz.de/10011209924
Vector autoregressive models have widely been applied in macroeconomics and macroeconometrics to estimate economic relationships and to empirically assess theoretical hypothesis. To achieve the latter, we propose a Bayesian inference approach to analyze the dynamic interactions among...
Persistent link: https://www.econbiz.de/10010705996
In high-dimensional vector autoregressive (VAR) models, it is natural to have large number of predictors relative to the number of observations, and a lack of efficiency in estimation and forecasting. In this context, model selection is a difficult issue and standard procedures may often be...
Persistent link: https://www.econbiz.de/10012904383
This paper considers a sparsity approach for inference in large vector autoregressive (VAR) models. The approach is based on a Bayesian procedure and a graphical representation of VAR models. We discuss a Markov chain Monte Carlo algorithm for sparse graph selection, parameter estimation, and...
Persistent link: https://www.econbiz.de/10013005518
Seemingly unrelated regression (SUR) models are useful in studying the interactions among different variables. In a high dimensional setting or when applied to large panel of time series, these models require a large number of parameters to be estimated and suffer of inferential problems.To...
Persistent link: https://www.econbiz.de/10012968298
Measuring and reducing energy consumption constitutes a crucial concern in public policies aimed at mitigating global warming. The real estate sector faces the challenge of enhancing building efficiency, where insights from experts play a pivotal role in the evaluation process. This research...
Persistent link: https://www.econbiz.de/10014377635
The purpose of this paper is the construction of an early warning indicator for systemic risk using entropy measures. The analysis is based on the cross-sectional distribution of marginal systemic risk measures such as Marginal Expected Shortfall, Delta CoVaR and network connectedness. These...
Persistent link: https://www.econbiz.de/10011277161
Measuring and reducing energy consumption constitutes a crucial concern in public policies aimed at mitigating global warming. The real estate sector faces the challenge of enhancing building efficiency, where insights from experts play a pivotal role in the evaluation process. This research...
Persistent link: https://www.econbiz.de/10014380597
The purpose of this paper is the construction of an early warning indicator for systemic risk using entropy measures. The analysis is based on the cross-sectional distribution of marginal systemic risk measures such as Marginal Expected Shortfall, Delta CoVaR and network connectedness. These...
Persistent link: https://www.econbiz.de/10013022947
A flexible predictive density combination model is introduced for large financial data sets which allows for dynamic weight learning and model set incompleteness. Dimension reduction procedures allocate the large sets of predictive densities and combination weights to relatively small sets....
Persistent link: https://www.econbiz.de/10013356469