Showing 1 - 10 of 170
Persistent link: https://www.econbiz.de/10010247741
This article is about estimation and inference methods for high dimensional sparse (HDS) regression models in econometrics. High dimensional sparse models arise in situations where many regressors (or series terms) are available and the regression function is well-approximated by a parsimonious,...
Persistent link: https://www.econbiz.de/10009419335
We develop uniformly valid confidence regions for regression coefficients in a highdimensional sparse median regression model with homoscedastic errors. Our methods are based on a moment equation that is immunized against non-regular estimation of the nuisance part of the median regression...
Persistent link: https://www.econbiz.de/10010462672
Persistent link: https://www.econbiz.de/10001647459
Persistent link: https://www.econbiz.de/10002197458
In this paper we study inference for a conditional model with a jump in the conditional density, where the location and size of the jump are described by regression lines. This interesting structure is shared by several structural econometric models. Two prominent examples are the standard...
Persistent link: https://www.econbiz.de/10014120006
Persistent link: https://www.econbiz.de/10012819429
In this paper we introduce various set inference problems as they appear in finance and propose practical and powerful inferential tools. Our tools will be applicable to any problem where the set of interest solves a system of smooth estimable inequalities, though we will particularly focus on...
Persistent link: https://www.econbiz.de/10009492357
We develop a practical and novel method for inference on intersection bounds, namely bounds defined by either the infimum or supremum of a parametric or nonparametric function, or equivalently, the value of a linear programming problem with a potentially infinite constraint set. Our approach is...
Persistent link: https://www.econbiz.de/10009375645
This paper considers inference in logistic regression models with high dimensional data. We propose new methods for estimating and constructing confidence regions for a regression parameter of primary interest α0, a parameter in front of the regressor of interest, such as the treatment variable...
Persistent link: https://www.econbiz.de/10010226493