Showing 1 - 10 of 44
Persistent link: https://www.econbiz.de/10005730276
Persistent link: https://www.econbiz.de/10001244376
Persistent link: https://www.econbiz.de/10000932608
In this paper, Markov chain Monte Carlo sampling methods are exploited to provide a unified, practical likelihood-based framework for the analysis of stochastic volatility models. A highly effective method is developed that samples all the unobserved volatilities at once using an approximating...
Persistent link: https://www.econbiz.de/10005312832
In this paper, Markov chain Monte Carlo sampling methods are exploited to provide a unified, practical likelihood-based framework for the analysis of stochastic volatility models. A highly effective method is developed that samples all the unobserved volatilities at once using an approximating...
Persistent link: https://www.econbiz.de/10014075961
In this paper, Markov chain Monte Carlo sampling methods are exploited to provide a unified, practical likelihood-based framework for the analysis of stochastic volatility models. A highly effective method is developed that samples all the unobserved volatilities at once using an approximating...
Persistent link: https://www.econbiz.de/10005556396
Persistent link: https://www.econbiz.de/10005730274
Kim, Shephard and Chib (1998) provided a Bayesian analysis of stochastic volatility models based on a very fast and reliable Markov chain Monte Carlo (MCMC) algorithm. Their method ruled out the leverage effect, which limited its scope for applications. Despite this, their basic method has been...
Persistent link: https://www.econbiz.de/10005730293
This paper provides methods for carrying out likelihood based inference for diffusion driven models, for example discretely observed multivariate diffusions, continuous time stochastic volatility models and counting process models. The diffusions can potentially be non-stationary. Although our...
Persistent link: https://www.econbiz.de/10005730357
Persistent link: https://www.econbiz.de/10007693480