Showing 1 - 10 of 39
We propose a new class of observation driven time series models referred to as Generalized Autoregressive Score (GAS) models. The driving mechanism of the GAS model is the scaled score of the likelihood function. This approach provides a unified and consistent framework for introducing...
Persistent link: https://www.econbiz.de/10010325732
We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts generalized autoregressive score dynamics to obtain a time-varying covariance matrix of the multivariate...
Persistent link: https://www.econbiz.de/10010325845
We introduce a new estimation framework which extends the Generalized Method of Moments (GMM) to settings where a subset of the parameters vary over time with unknown dynamics. To filter out the dynamic path of the time-varying parameter, we approximate the dynamics by an autoregressive process...
Persistent link: https://www.econbiz.de/10011451505
We propose an observation-driven dynamic factor model for mixed-measurement and mixed-frequency panel data. Time series observations may come from a range of families of distributions, be observed at different frequencies, have missing observations, and exhibit common dynamics and...
Persistent link: https://www.econbiz.de/10011096896
This discussion paper led to a publication in <A href="http://www.tandfonline.com/doi/abs/10.1198/jbes.2011.10070">'Journal of Business & Economic Statistics'</A>, 29(4), 552-63.<P>We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts...</p></a>
Persistent link: https://www.econbiz.de/10011257658
We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts generalized autoregressive score dynamics to obtain a time-varying covariance matrix of the multivariate...
Persistent link: https://www.econbiz.de/10010975846
We propose a dynamic factor model for mixed-measurement and mixed-frequency panel data. In this framework time series observations may come from a range of families of parametric distributions, may be observed at different time frequencies, may have missing observations, and may exhibit common...
Persistent link: https://www.econbiz.de/10011605671
We propose a new class of observation driven time series models referred to as Generalized Autoregressive Score (GAS) models. The driving mechanism of the GAS model is the scaled score of the likelihood function. This approach provides a unified and consistent framework for introducing...
Persistent link: https://www.econbiz.de/10005209514
Persistent link: https://www.econbiz.de/10009358091
We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts generalized autoregressive score dynamics to obtain a time-varying covariance matrix of the multivariate...
Persistent link: https://www.econbiz.de/10008838568