Showing 1 - 10 of 28
Classical multivariate analysis techniques such as principal components analysis and correspondence analysis use inner products to estimate data values. The results of these techniques may be visualized by representing the row and column points jointly in a biplot where the projection of a row...
Persistent link: https://www.econbiz.de/10005505007
Most recommender systems present recommended products in lists to the user. By doing so, much information is lost about the mutual similarity between recommended products. We propose to represent the mutual similarities of the recommended products in a two dimensional space, where similar...
Persistent link: https://www.econbiz.de/10005450836
Marketing problems often involve inary classification of customers into ``buyers'' versus ``non-buyers'' or ``prefers brand A'' versus ``prefers brand B''. These cases require binary classification models such as logistic regression, linear, and quadratic discriminant analysis. A promising...
Persistent link: https://www.econbiz.de/10005450848
To minimize the primal support vector machine (SVM) problem, we propose to use iterative majorization. To do so, we propose to use it- erative majorization. To allow for nonlinearity of the predictors, we use (non)monotone spline transformations. An advantage over the usual ker- nel approach in...
Persistent link: https://www.econbiz.de/10005450850
Support vector machines (SVM) are becoming increasingly popular for the prediction of a binary dependent variable. SVMs perform very well with respect to competing techniques. Often, the solution of an SVM is obtained by switching to the dual. In this paper, we stick to the primal support vector...
Persistent link: https://www.econbiz.de/10005450870
This paper is concerned with time series forecasting in the presence of a large number of predictors. The results are of interest, for instance, in macroeconomic and financial forecasting where often many potential predictor variables are available. Most of the current forecast methods with many...
Persistent link: https://www.econbiz.de/10005450877
Consider the classification task of assigning a test object to one of two or more possible groups, or classes. An intuitive way to proceed is to assign the object to that class, to which the distance is minimal. As a distance measure to a class, we propose here to use the distance to the convex...
Persistent link: https://www.econbiz.de/10005450881
In this paper, we propose a new model that combines the vector model and the ideal point model of unfolding. An algorithm is developed, called VIPSCAL, that minimizes the combined loss both for ordinal and interval transformations. As such, mixed representations including both vectors and ideal...
Persistent link: https://www.econbiz.de/10005450890
Distances in the well known fuzzy c-means algorithm of Bezdek (1973) are measured by the squared Euclidean distance. Other distances have been used as well in fuzzy clustering. For example, Jajuga (1991) proposed to use the L_1-distance and Bobrowski and Bezdek (1991) also used the...
Persistent link: https://www.econbiz.de/10005450893
Two-mode clustering is a relatively new form of clustering that clusters both rows and columns of a data matrix. To do so, a criterion similar to k-means is optimized. However, it is still unclear which optimization method should be used to perform two-mode clustering, as various methods may...
Persistent link: https://www.econbiz.de/10005450901