Showing 1 - 10 of 262
We consider two semiparametric models for the weight function in a biased sample model. The object of our interest parametrizes the weight function, and it is either Euclidean or non Euclidean. One of the models discussed in this paper is motivated by the estimation the mixing distribution of...
Persistent link: https://www.econbiz.de/10005861031
We consider two semiparametric models for the weight function in a biased sample model. The object of our interest parametrizes the weight function, and it is either Euclidean or non Euclidean. One of the models discussed in this paper is motivated by the estimation the mixing distribution of...
Persistent link: https://www.econbiz.de/10005652736
We consider two semiparametric models for the weight function in a bias sample model. The object of our interest parametrizes the weight function, and it is either Euclidean or non Euclidean. One of the models discussed in this paper is motivated by the estimation the mixing distribution of...
Persistent link: https://www.econbiz.de/10003633700
While attention is a predictor for digital asset prices, and jumps in Bitcoin prices are well-known, we know little about its alternatives. Studying high frequency crypto data gives us the unique possibility to confirm that cross market digital asset returns are driven by high frequency jumps...
Persistent link: https://www.econbiz.de/10013323741
Independent component analysis (ICA) is a modern factor analysis tool developed in the last two decades. Given p-dimensional data, we search for that linear combination of data which creates (almost) independent components. Here copulae are used to model the p-dimensional data and then...
Persistent link: https://www.econbiz.de/10005860753
This paper offers a new method for estimation and forecasting of the linear and nonlinear time series when the stationarity assumption is violated. Our general local parametric approach particularly applies to general varying-coefficient parametric models, such as AR or GARCH, whose coefficients...
Persistent link: https://www.econbiz.de/10005860756
Normal distribution of the residuals is the traditional assumption in the classicalmultivariate time series models. Nevertheless it is not very often consistent with the real data.Copulae allows for an extension of the classical time series models to nonelliptically distributedresiduals. In this...
Persistent link: https://www.econbiz.de/10005865416
Measuring and modeling financial volatility is the key to derivative pricing, asset allocation and risk management. The recent availability of high-frequency data allows for refined methods in this field. In particular, more precise measures for the daily or lower frequency volatility can be...
Persistent link: https://www.econbiz.de/10005860514
In semiparametric models it is a common approach to under-smooth the nonparametric functions inorder that estimators of the finite dimensional parameters can achieve root-n consistency. The requirementof under-smoothing may result as we show from inefficient estimation methods or technical...
Persistent link: https://www.econbiz.de/10008939775
Normal distribution of the residuals is the traditional assumption in the classical multivariate time series models. Nevertheless it is not very often consistent with the real data. Copulae allows for an extension of the classical time series models to nonelliptically distributed residuals. In...
Persistent link: https://www.econbiz.de/10005016234