Showing 1 - 10 of 16
We propose a novel approach to model serially dependent positive-valued variables which realize a non-trivial proportion of zero outcomes. This is a typical phenomenon in financial time series observed at high frequencies, such as cumulated trading volumes. We introduce a flexible point-mass...
Persistent link: https://www.econbiz.de/10010308578
We introduce a copula-based dynamic model for multivariate processes of (non-negative) high-frequency trading variables revealing time-varying conditional variances and correlations. Modeling the variables' conditional mean processes using a multiplicative error model we map the resulting...
Persistent link: https://www.econbiz.de/10010318750
Multiplicative error models (MEM) became a standard tool for modeling conditional durations of intraday transactions, realized volatilities and trading volumes. The parametric estimation of the corresponding multivariate model, the so-called vector MEM (VMEM), requires a specification of the...
Persistent link: https://www.econbiz.de/10010318757
We introduce a multivariate multiplicative error model which is driven by componentspecific observation driven dynamics as well as a common latent autoregressive factor. The model is designed to explicitly account for (information driven) common factor dynamics as well as idiosyncratic effects...
Persistent link: https://www.econbiz.de/10010263700
We introduce a Nelson-Siegel type interest rate term structure model with the underlying yield factors following autoregressive processes revealing time-varying stochastic volatility. The factor volatilities capture risk inherent to the term struc- ture and are associated with the time-varying...
Persistent link: https://www.econbiz.de/10010263741
In this paper, we review the most common specifications of discrete-time stochastic volatility (SV) models and illustrate the major principles of corresponding Markov Chain Monte Carlo (MCMC) based statistical inference. We provide a hands-on ap proach which is easily implemented in empirical...
Persistent link: https://www.econbiz.de/10010263750
In this paper, we develop and apply Bayesian inference for an extended Nelson-Siegel (1987) term structure model capturing interest rate risk. The so-called Stochastic Volatility Nelson-Siegel (SVNS) model allows for stochastic volatility in the underlying yield factors. We propose a Markov...
Persistent link: https://www.econbiz.de/10010270702
We introduce a regularization and blocking estimator for well-conditioned high-dimensional daily covariances using high-frequency data. Using the Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008a) kernel estimator, we estimate the covariance matrix block-wise and regularize it. A data-driven...
Persistent link: https://www.econbiz.de/10010270808
Bayesian learning provides a core concept of information processing in financial markets. Typically it is assumed that market participants perfectly know the quality of released news. However, in practice, news' precision is rarely disclosed. Therefore, we extend standard Bayesian learning...
Persistent link: https://www.econbiz.de/10010274280
We introduce a multivariate multiplicative error model which is driven by componentspecific observation driven dynamics as well as a common latent autoregressive factor. The model is designed to explicitly account for (information driven) common factor dynamics as well as idiosyncratic effects...
Persistent link: https://www.econbiz.de/10010298374