Showing 1 - 10 of 186
This paper addresses the open debate about the effectiveness and practical relevance of high-frequency (HF) data in portfolio allocation. Our results demonstrate that when used with proper econometric models, HF data offers gains over daily data and more importantly these gains are maintained...
Persistent link: https://www.econbiz.de/10013120653
This paper addresses the open debate about the effectiveness and practical relevance of highfrequency (HF) data in portfolio allocation. Our results demonstrate that when used with proper econometric models, HF data offers gains over daily data and more importantly these gains are maintained...
Persistent link: https://www.econbiz.de/10009306337
This paper addresses the open debate about the usefulness of high-frequency (HF) data in large-scale portfolio allocation. Daily covariances are estimated based on HF data of the S&P 500 universe employing a blocked realized kernel estimator. We propose forecasting covariance matrices using a...
Persistent link: https://www.econbiz.de/10009308302
We provide a new framework for modeling trends and periodic patterns in high-frequency financial data. Seeking adaptivity to ever-changing market conditions, we enlarge the Fourier flexible form into a richer functional class: both our smooth trend and the seasonality are non-parametrically...
Persistent link: https://www.econbiz.de/10011411344
This paper addresses the open debate about the usefulness of high-frequency (HF) data in large-scale portfolio allocation. We consider the problem of constructing global minimum variance portfolios based on the constituents of the S&P 500 over a four-year period covering the 2008 financial...
Persistent link: https://www.econbiz.de/10013085726
This paper addresses the open debate about the usefulness of high-frequency (HF) data in large-scale portfolio allocation. We consider the problem of constructing global minimum variance portfolios based on the constituents of the S&P 500 over a four-year period covering the 2008 financial...
Persistent link: https://www.econbiz.de/10009714536
This paper provides theory as well as empirical results for pre-averaging estimators of the daily quadratic variation of asset prices. We derive jump robust inference for pre-averaging estimators, corresponding feasible central limit theorems and an explicit test on serial dependence in...
Persistent link: https://www.econbiz.de/10008663394
This paper provides theory as well as empirical results for pre-averaging estimators of the daily quadratic variation of asset prices. We derive jump robust inference for pre-averaging estimators, corresponding feasible central limit theorems and an explicit test on serial dependence in...
Persistent link: https://www.econbiz.de/10008697981
We introduce a long memory autoregressive conditional Poisson (LMACP) model to model highly persistent time series of counts. The model is applied to forecast quoted bid-ask spreads, a key parameter in stock trading operations. It is shown that the LMACP nicely captures salient features of...
Persistent link: https://www.econbiz.de/10014180186
We introduce a long memory autoregressive conditional Poisson (LMACP) model to model highly persistent time series of counts. The model is applied to forecast quoted bid-ask spreads, a key parameter in stock trading operations. It is shown that the LMACP nicely captures salient features of...
Persistent link: https://www.econbiz.de/10009229669