Showing 1 - 10 of 33
Classical (Ito diffusions) stochastic volatility models are not able to capture the steepness of small-maturity implied volatility smiles. Jumps, in particular exponential Levy and affine models, which exhibit small-maturity exploding smiles, have historically been proposed to remedy this (see...
Persistent link: https://www.econbiz.de/10013025371
We prove here a general closed-form expansion formula for forward-start options and the forward implied volatility smile in a large class of models, including the Heston stochastic volatility and time-changed exponential Levy models.This expansion applies to both small and large maturities and...
Persistent link: https://www.econbiz.de/10013036196
We build on of the work of Henry-Labordµere and Lewis on the small-time behaviour of the return distribution under a general local-stochastic volatility model with zero correlation. We do this using the Freidlin-Wentzell theory of large deviations for stochastic differential equations, and then...
Persistent link: https://www.econbiz.de/10013116586
In this paper we prove an approximate formula expressed in terms of elementary functions for the implied volatility in the Heston model. The formula consists of the constant and first order terms in the large maturity expansion of the implied volatility function. The proof is based on...
Persistent link: https://www.econbiz.de/10013116644
We develop a dynamic version of the SSVI parameterisation for the total implied variance, ensuring that European vanilla option prices are martingales, hence preventing the occurrence of arbitrage, both static and dynamic. Insisting on the constraint that the total implied variance needs to be...
Persistent link: https://www.econbiz.de/10012847637
Using Malliavin Calculus techniques, we derive closed-form expressions for the at-the-money behaviour of the forward implied volatility, its skew and its curvature, in general Markovian stochastic volatility models with continuous paths
Persistent link: https://www.econbiz.de/10012944411
We revisit the foundational Moment Formula proved by Roger Lee fifteen years ago. We show that when the underlying stock price martingale admits finite log-moments E[|log (S)|^q] for some positive q, the arbitrage-free growth in the left wing of the implied volatility smile is less constrained...
Persistent link: https://www.econbiz.de/10013241823
We explore the robust replication of forward-start straddles given quoted (Call and Put options) market data. One approach to this problem classically follows semi-infinite linear programming arguments, and we propose a discretisation scheme to reduce its dimensionality and hence its complexity....
Persistent link: https://www.econbiz.de/10012996023
We provide a full characterisation of the large-maturity forward implied volatility smile in the Heston model. Although the leading decay is provided by a fairly classical large deviations behaviour, the algebraic expansion providing the higher-order terms highly depends on the parameters, and...
Persistent link: https://www.econbiz.de/10013005746
In this paper we investigate the asymptotics of forward-start options and the forward implied volatility smile in the Heston model as the maturity approaches zero. We prove that the forward smile for out-of-the-money options explodes and compute a closed-form high-order expansion detailing the...
Persistent link: https://www.econbiz.de/10013035837