Showing 1 - 10 of 33
We survey the nascent literature on machine learning in the study of financial markets. We highlight the best examples of what this line of research has to offer and recommend promising directions for future research. This survey is designed for both financial economists interested in grasping...
Persistent link: https://www.econbiz.de/10014322889
We survey the nascent literature on machine learning in the study of financial markets. We highlight the best examples of what this line of research has to offer and recommend promising directions for future research. This survey is designed for both financial economists interested in grasping...
Persistent link: https://www.econbiz.de/10014349505
induced by short-sale costs and limits-to-arbitrage …
Persistent link: https://www.econbiz.de/10014340974
Stock momentum, long-term reversal, and other past return characteristics that predict future returns also predict future realized betas, suggesting these characteristics capture time-varying risk compensation. We formalize this argument with a conditional factor pricing model. Using...
Persistent link: https://www.econbiz.de/10012832984
induced by information frictions, short-selling costs, and limits-to-arbitrage …
Persistent link: https://www.econbiz.de/10013298797
We propose that investment strategies should be evaluated based on their net-of-trading-cost return for each level of risk, which we term the "implementable efficient frontier." While numerous studies use machine learning return forecasts to generate portfolios, their agnosticism toward trading...
Persistent link: https://www.econbiz.de/10013492674
We seek fundamental risks from news text. Conceptually, news is closely related to the idea of systematic risk, in particular the "state variables" in the ICAPM. News captures investors' concerns about future investment opportunities, and hence drives the current pricing kernel. This paper...
Persistent link: https://www.econbiz.de/10013217295
We propose a new asset-pricing framework in which all securities' signals are used to predict each individual return. While the literature focuses on each security's own- signal predictability, assuming an equal strength across securities, our framework is flexible and includes...
Persistent link: https://www.econbiz.de/10012271188
We generalize the seminal Gibbons-Ross-Shanken test to the empirically relevant case where the number of test assets far exceeds the number of observations. In such a setting, one needs to use a regularized estimator of the covariance matrix of test assets, which leads to biases in the original...
Persistent link: https://www.econbiz.de/10015361441
We theoretically characterize the behavior of machine learning asset pricing models. We prove that expected out-of-sample model performance—in terms of SDF Sharpe ratio and average pricing errors—is improving in model parameterization (or “complexity”). Our results predict that the best...
Persistent link: https://www.econbiz.de/10014254198