Showing 1 - 10 of 17
Identification through heteroskedasticity in heteroskedastic simultaneous equations models (HSEMs) is considered. The possibility that heteroskedasticity identifies the structural parameters only partially is explicitly allowed for. The asymptotic properties of the identified parameters are...
Persistent link: https://www.econbiz.de/10012964101
Identification through heteroskedasticity in heteroskedastic simultaneous equations models (HSEMs) is considered. The possibility that heteroskedasticity identifies the structural parameters only partially is explicitly allowed for. The asymptoticproperties of the identified parameters are...
Persistent link: https://www.econbiz.de/10012965407
Persistent link: https://www.econbiz.de/10011783186
Identification through heteroskedasticity in heteroskedastic simultaneous equations models (HSEMs) is considered. The possibility that heteroskedasticity identifies the structural parameters only partially is explicitly allowed for. The asymptoticproperties of the identified parameters are...
Persistent link: https://www.econbiz.de/10011587226
Persistent link: https://www.econbiz.de/10012483004
We consider a spatial econometric model containing a spatial lag in the dependent variable and the disturbance term with an unknown form of heteroskedasticity in innovations. We first prove that the maximum likelihood (ML) estimator for spatial autoregressive models is generally inconsistent...
Persistent link: https://www.econbiz.de/10014160295
We examine instrumental variables estimation in situations where the instrument is only observed for a sub-sample, which is fairly common in empirical research. Typically, researchers simply limit the analysis to the sub-sample where the instrument is non-missing. We show that when the...
Persistent link: https://www.econbiz.de/10013148348
Many empirical studies specify outcomes as a linear function of endogenous regressors when conducting instrumental variable (IV) estimation. We show that tests for treatment effects, selection bias, and treatment effect heterogeneity are biased if the true relationship is non-linear. These...
Persistent link: https://www.econbiz.de/10013154481
We examine instrumental variables estimation in situations where the instrument is only observed for a sub-sample, which is fairly common in empirical research. Typically, researchers simply limit the analysis to the sub-sample where the instrument is non-missing. We show that when the...
Persistent link: https://www.econbiz.de/10003934100
Many empirical studies specify outcomes as a linear function of endogenous regressors when conducting instrumental variable (IV) estimation. We show that tests for treatment effects, selection bias, and treatment effect heterogeneity are biased if the true relationship is non-linear. These...
Persistent link: https://www.econbiz.de/10003917067