Showing 1 - 10 of 38
This article uses a sequentialized experimental design to select simulation input combinations for global optimization, based on Kriging (also called Gaussian process or spatial correlation modeling); this Kriging is used to analyze the input/output data of the simulation model (computer code)....
Persistent link: https://www.econbiz.de/10014185812
To analyze the input/output behavior of simulation models with multiple responses, we may apply either univariate or multivariate Kriging (Gaussian process) metamodels. In multivariate Kriging we face a major problem: the covariance matrix of all responses should remain positive-de nite; we...
Persistent link: https://www.econbiz.de/10014040833
This paper studies simulation-based optimization with multiple outputs. It assumes that the simulation model has one random objective function and must satisfy given constraints on the other random outputs. It presents a statistical procedure for testing whether a specific input combination...
Persistent link: https://www.econbiz.de/10014049484
This article reviews so-called screening in simulation; i.e., it examines the search for the really important factors in experiments with simulation models that have very many factors (or inputs).The article focuses on a most e¢ cient and e¤ective screening method, namely Sequential...
Persistent link: https://www.econbiz.de/10014050440
This article reviews Kriging (also called spatial correlation modeling). It presents the basic Kriging assumptions and formulas, contrasting Kriging and classic linear regression metamodels. Furthermore, it extends Kriging to random simulation, and discusses bootstrapping to estimate the...
Persistent link: https://www.econbiz.de/10014051489
In practice, simulation analysts often change only one factor at a time, and use graphical analysis of the resulting Input/Output (I/O) data. Statistical theory proves that more information is obtained when applying Design Of Experiments (DOE) and linear regression analysis. Unfortunately,...
Persistent link: https://www.econbiz.de/10014052879
Kriging (Gaussian process, spatial correlation) metamodels approximate the Input/Output (I/O) functions implied by the underlying simulation models; such metamodels serve sensitivity analysis and optimization, especially for computationally expensive simulations. In practice, simulation analysts...
Persistent link: https://www.econbiz.de/10014203752
This paper presents a novel heuristic for constrained optimization of random computer simulation models, in which one of the simulation outputs is selected as the objective to be minimized while the other outputs need to satisfy prespecified target values. Besides the simulation outputs, the...
Persistent link: https://www.econbiz.de/10014212782
Distribution-free bootstrapping of the replicated responses of a given discreteevent simulation model gives bootstrapped Kriging (Gaussian process) metamodels; we require these metamodels to be either convex or monotonic. To illustrate monotonic Kriging, we use an M/M/1 queueing simulation with...
Persistent link: https://www.econbiz.de/10014166285
This paper reviews the state of art in five related types of analysis, namely (i) sensitivity or what-if analysis, (ii) uncertainty or risk analysis, (iii) screening, (iv) validation, and (v) optimization. The main question is: when should which type of analysis be applied; which statistical...
Persistent link: https://www.econbiz.de/10014117316