Showing 1 - 10 of 300
Invertibility conditions for observation-driven time series models often fail to be guaranteed in empirical applications. As a result, the asymptotic theory of maximum likelihood and quasi-maximum likelihood estimators may be compromised. We derive considerably weaker conditions that can be used...
Persistent link: https://www.econbiz.de/10011586697
Invertibility conditions for observation-driven time series models often fail to be guaranteed in empirical applications. As a result, the asymptotic theory of maximum likelihood and quasi-maximum likelihood estimators may be compromised. We derive considerably weaker conditions that can be used...
Persistent link: https://www.econbiz.de/10012981759
Invertibility conditions for observation-driven time series models often fail to be guaranteed in empirical applications. As a result, the asymptotic theory of maximum likelihood and quasi-maximum likelihood estimators may be compromised. We derive considerably weaker conditions that can be used...
Persistent link: https://www.econbiz.de/10011556144
We characterize the dynamic properties of Generalized Autoregressive Score (GAS) processes by identifying regions of the parameter space that imply stationarity and ergodicity. We show how these regions are affected by the choice of parameterization and scaling, which are key features of GAS...
Persistent link: https://www.econbiz.de/10010326396
This discussion paper led to a publication in the <I>Electronic Journal of Statistics</I> (2014). Vol. 8, pages 1088-1112.<P> We characterize the dynamic properties of Generalized Autoregressive Score (GAS) processes by identifying regions of the parameter space that imply stationarity and ergodicity. We...</p></i>
Persistent link: https://www.econbiz.de/10011256295
We characterize the dynamic properties of Generalized Autoregressive Score (GAS) processes by identifying regions of the parameter space that imply stationarity and ergodicity. We show how these regions are affected by the choice of parameterization and scaling, which are key features of GAS...
Persistent link: https://www.econbiz.de/10013065930
Persistent link: https://www.econbiz.de/10009722625
We propose a new methodology for the Bayesian analysis of nonlinear non-Gaussian state space models with a Gaussian time-varying signal, where the signal is a function of a possibly high-dimensional state vector. The novelty of our approach is the development of proposal densities for the joint...
Persistent link: https://www.econbiz.de/10010326393
We introduce a dynamic statistical model for Skellam distributed random variables. The Skellam distribution can be obtained by taking differences between two Poisson distributed random variables. We treat cases where observations are measured over time and where possible serial correlation is...
Persistent link: https://www.econbiz.de/10010377185
We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent...
Persistent link: https://www.econbiz.de/10010491347