Showing 1 - 10 of 65
Macroeconomic practitioners frequently work with multivariate time series models such as VARs, factor augmented VARs as well as time-varying parameter versions of these models (including variants with multivariate stochastic volatility). These models have a large number of parameters and, thus,...
Persistent link: https://www.econbiz.de/10015220073
In all areas of human knowledge, datasets are increasing in both size and complexity, creating the need for richer statistical models. This trend is also true for economic data, where high-dimensional and nonlinear/noparametric inference is the norm in several fields of applied econometric work....
Persistent link: https://www.econbiz.de/10015265696
Macroeconomic practitioners frequently work with multivariate time series models such as VARs, factor augmented VARs as well as time-varying parameter versions of these models (including variants with multivariate stochastic volatility). These models have a large number of parameters and, thus,...
Persistent link: https://www.econbiz.de/10008487526
Macroeconomic practitioners frequently work with multivariate time series models such as VARs, factor augmented VARs as well as time-varying parameter versions of these models (including variants with multivariate stochastic volatility). These models have a large number of parameters and, thus,...
Persistent link: https://www.econbiz.de/10008561154
This paper addresses the issue of improving the forecasting performance of vector autoregressions (VARs) when the set of available predictors is inconveniently large to handle with methods and diagnostics used in traditional small scale models. First, available information from a large dataset...
Persistent link: https://www.econbiz.de/10015220712
This paper develops methods for automatic selection of variables in forecasting Bayesian vector autoregressions (VARs) using the Gibbs sampler. In particular, I provide computationally efficient algorithms for stochastic variable selection in generic (linear and nonlinear) VARs. The performance...
Persistent link: https://www.econbiz.de/10015220713
This paper builds on a simple unified representation of shrinkage Bayes estimators based on hierarchical Normal-Gamma priors. Various popular penalized least squares estimators for shrinkage and selection in regression models can be recovered using this single hierarchical Bayes formulation....
Persistent link: https://www.econbiz.de/10015226607
In this paper we develop methods for estimation and forecasting in large time-varying parameter vector autoregressive models (TVP-VARs). To overcome computational constraints with likelihood-based estimation of large systems, we rely on Kalman filter estimation with forgetting factors. We also...
Persistent link: https://www.econbiz.de/10015231929
This paper proposes a mean field variational Bayes algorithm for efficient posterior and predictive inference in time-varying parameter models. Our approach involves: i) computationally trivial Kalman filter updates of regression coefficients, ii) a dynamic variable selection prior that removes...
Persistent link: https://www.econbiz.de/10015260981
This paper proposes two distinct contributions to econometric analysis of large information sets and structural instabilities. First, it treats a regression model with time-varying coefficients, stochastic volatility and exogenous predictors, as an equivalent high-dimensional static regression...
Persistent link: https://www.econbiz.de/10015265173