Showing 1 - 10 of 86
Markowitz portfolio selection is a cornerstone in finance, both in academia and in the industry. Most academic studies either ignore transaction costs or account for them in a way that is both unrealistic and suboptimal by (i) assuming transaction costs to be constant across stocks and (ii)...
Persistent link: https://www.econbiz.de/10013441507
This paper estimates the curvature of the Earth, defined as one over its radius, without using any physics. The orthodox model is that the Earth is nearly spherical with a curvature of Û/20, 000 km. By contrast, the heterodox flat-Earth model stipulates a curvature of zero. Abstracting from the...
Persistent link: https://www.econbiz.de/10014333767
Markowitz portfolio selection is a cornerstone in finance, in academia as well as in the industry. Most academic studies either ignore transaction costs or account for them in a way that is both unrealistic and suboptimal by (i) assuming transaction costs to be constant across stocks and (ii)...
Persistent link: https://www.econbiz.de/10014468188
Many statistical applications require an estimate of a covariance matrix and/or its inverse.When the matrix dimension is large compared to the sample size, which happensfrequently, the sample covariance matrix is known to perform poorly and may suffer fromill-conditioning. There already exists...
Persistent link: https://www.econbiz.de/10009486994
Covariance matrix estimation and principal component analysis (PCA) are two cornerstones of multivariate analysis. Classic textbook solutions perform poorly when the dimension of the data is of a magnitude similar to the sample size, or even larger. In such settings, there is a common remedy for...
Persistent link: https://www.econbiz.de/10010316930
This paper revisits the methodology of Stein (1975, 1986) for estimating a covariance matrix in the setting where the number of variables can be of the same magnitude as the sample size. Stein proposed to keep the eigenvectors of the sample covariance matrix but to shrink the eigenvalues. By...
Persistent link: https://www.econbiz.de/10010316932
This paper introduces a new method for deriving covariance matrix estimators that are decision-theoretically optimal. The key is to employ large-dimensional asymptotics: the matrix dimension and the sample size go to infinity together, with their ratio converging to a finite, nonzero limit. As...
Persistent link: https://www.econbiz.de/10010332044
Markowitz (1952) portfolio selection requires estimates of (i) the vector of expected returns and (ii) the covariance matrix of returns. Many proposals to address the first question exist already. This paper addresses the second question. We promote a new nonlinear shrinkage estimator of the...
Persistent link: https://www.econbiz.de/10011282472
This paper injects factor structure into the estimation of time-varying, large-dimensional covariance matrices of stock returns. Existing factor models struggle to model the covariance matrix of residuals in the presence of conditional heteroskedasticity in large universes. Conversely,...
Persistent link: https://www.econbiz.de/10011969201
Many econometric and data-science applications require a reliable estimate of the covariance matrix, such as Markowitz portfolio selection. When the number of variables is of the same magnitude as the number of observations, this constitutes a difficult estimation problem; the sample covariance...
Persistent link: https://www.econbiz.de/10012026512