Showing 1 - 10 of 110
We introduce a new, easily scalable model for dynamic conditional correlation matrices based on a recursion of dynamic bivariate partial correlation models. By exploiting the model's recursive structure and the theory of perturbed stochastic recurrence equations, we establish stationarity,...
Persistent link: https://www.econbiz.de/10013427597
We study the in-fill asymptotics of score-driven time series models. For general forms of model mis-specification, we show that score-driven filters are consistent for the Kullback-Leibler (KL) optimal time-varying parameter path, which minimizes the pointwise KL divergence between the...
Persistent link: https://www.econbiz.de/10014469606
We propose an empirical framework to assess the likelihood of joint and conditional sovereign default from observed CDS prices. Our model is based on a dynamic skewed-t distribution that captures all salient features of the data, including skewed and heavytailed changes in the price of CDS...
Persistent link: https://www.econbiz.de/10010320778
We model panel data of crime careers of juveniles from a Dutch Judicial Juvenile Institution. The data are decomposed into a systematic and an individual-specific component, of which the systematic component reflects the general time-varying conditions including the criminological climate....
Persistent link: https://www.econbiz.de/10010325431
We model 1981–2002 annual US default frequencies for a panel of firms in different rating and age classes. The data is decomposed into a systematic and firm-specific risk component, where the systematic component reflects the general economic conditions and default climate. We have to cope...
Persistent link: https://www.econbiz.de/10010325605
We propose a new class of observation driven time series models referred to as Generalized Autoregressive Score (GAS) models. The driving mechanism of the GAS model is the scaled score of the likelihood function. This approach provides a unified and consistent framework for introducing...
Persistent link: https://www.econbiz.de/10010325732
We propose a new class of observation-driven time-varying parameter models for dynamic volatilities and correlations to handle time series from heavy-tailed distributions. The model adopts generalized autoregressive score dynamics to obtain a time-varying covariance matrix of the multivariate...
Persistent link: https://www.econbiz.de/10010325845
We study the possibility for international diversification of catastrophe risk by the insurance sector. Adopting the argument that large insurance losses may be a `globalizing factor' for the industry, we study the dependence of geographically distant insurance markets via equity returns. In...
Persistent link: https://www.econbiz.de/10010325993
We develop a new simultaneous time series model for volatility and dependence with long memory (fractionally integrated) dynamics and heavy-tailed densities. Our new multivariate model accounts for typical empirical features in financial time series while being robust to outliers or jumps in the...
Persistent link: https://www.econbiz.de/10010326461
We introduce a dynamic statistical model for Skellam distributed random variables. The Skellam distribution can be obtained by taking differences between two Poisson distributed random variables. We treat cases where observations are measured over time and where possible serial correlation is...
Persistent link: https://www.econbiz.de/10010377185