Showing 1 - 10 of 66
We introduce a new model for time-varying spatial dependence. The model extends the well-known static spatial lag model. All parameters can be estimated conveniently by maximum likelihood. We establish the theoretical properties of the model and show that the maximum likelihood estimator for the...
Persistent link: https://www.econbiz.de/10010491331
We introduce a new model for time-varying spatial dependence. The model extends the well-known static spatial lag model. All parameters can be estimated conveniently by maximum likelihood. We establish the theoretical properties of the model and show that the maximum likelihood estimator for the...
Persistent link: https://www.econbiz.de/10011257308
Two new measures for financial systemic risk are computed based on the time-varying conditional and unconditional probability of simultaneous failures of several financial institutions. These risk measures are derived from a multivariate model that allows for skewed and heavy-tailed changes in...
Persistent link: https://www.econbiz.de/10010326546
We develop a novel high-dimensional non-Gaussian modeling framework to infer conditional and joint risk measures for many financial sector firms. The model is based on a dynamic Generalized Hyperbolic Skewed-t block-equicorrelation copula with time-varying volatility and dependence parameters...
Persistent link: https://www.econbiz.de/10011255874
We develop a new parameter stability test against the alternative of observation driven generalized autoregressive score dynamics. The new test generalizes the ARCH-LM test of Engle (1982) to settings beyond time-varying volatility and exploits any autocorrelation in the likelihood scores under...
Persistent link: https://www.econbiz.de/10010377214
We study the strong consistency and asymptotic normality of the maximum likelihood estimator for a class of time series models driven by the score function of the predictive likelihood. This class of nonlinear dynamic models includes both new and existing observation driven time series models....
Persistent link: https://www.econbiz.de/10010377233
We study the strong consistency and asymptotic normality of the maximum likelihood estimator for a class of time series models driven by the score function of the predictive likelihood. This class of nonlinear dynamic models includes both new and existing observation driven time series models....
Persistent link: https://www.econbiz.de/10011256845
In this paper we investigate the properties of the Lagrange Multiplier (LM) test for autoregressive conditional heteroskedasticity (ARCH) and generalized ARCH (GARCH) in the presence of additive outliers (AO's). We show analytically that both the asymptotic size and power are adversely affected...
Persistent link: https://www.econbiz.de/10010837947
We develop a new parameter stability test against the alternative of observation driven generalized autoregressive score dynamics. The new test generalizes the ARCH-LM test of Engle (1982) to settings beyond time-varying volatility and exploits any autocorrelation in the likelihood scores under...
Persistent link: https://www.econbiz.de/10011255854
We investigate the information theoretic optimality properties of the score function of the predictive likelihood as a device to update parameters in observation driven time-varying parameter models. The results provide a new theoretical justification for the class of generalized autoregressive...
Persistent link: https://www.econbiz.de/10013055616