Showing 51 - 60 of 79
We first propose two procedures for estimating the rejection probabilities of bootstrap tests in Monte Carlo experiments without actually computing a bootstrap test for each replication. These procedures are only about twice as expensive (per replication) as estimating rejection probabilities...
Persistent link: https://www.econbiz.de/10005688436
We propose several Lagrange Multiplier tests of logit and probit models, which may be inexpensively computed by artificial linear regressions. These may be used to test for omitted variables and heteroskedasticity. We argue that one of these tests is likely to have better small-sample...
Persistent link: https://www.econbiz.de/10005688472
Resampling methods such as the bootstrap are routinely used to estimate the finite-sample null distributions of a range of test statistics. We present a simple and tractable way to perform classical hypothesis tests based upon a kernel estimate of the CDF of the bootstrap statistics. This...
Persistent link: https://www.econbiz.de/10005688509
We introduce the concept of the bootstrap discrepancy, which measures the difference in rejection probabilities between a bootstrap test based on a given test statistic and that of a (usually infeasible) test based on the true distribution of the statistic. We show that the bootstrap discrepancy...
Persistent link: https://www.econbiz.de/10005688539
We perform an extensive series of Monte Carlo experiments to compare the performance of two variants of the "Jackknife Instrumental Variables Estimator," or JIVE, with that of the more familiar 2SLS and LIML estimators. We find no evidence to suggest that JIVE should ever be used. It is always...
Persistent link: https://www.econbiz.de/10005787665
Non-nested hypothesis tests provide a way to test the specification of an econometric model against the evidence provided by one or more non-nested alternatives. This paper surveys the recent literature on non-nested hypothesis testing in the context of regression and related models. Much of the...
Persistent link: https://www.econbiz.de/10005787681
We study several tests for the coefficient of the single right-hand-side endogenous variable in a linear equation estimated by instrumental variables. We show that all the test statistics--Student's t, Anderson-Rubin, Kleibergen's K, and likelihood ratio (LR)--can be written as functions of six...
Persistent link: https://www.econbiz.de/10005787714
Associated with every popular nonlinear estimation method is at least one "artificial" linear regression. We define an artificial regression in terms of three conditions that it must satisfy. Then we show how artificial regressions can be useful for numerical optimization, testing hypotheses,...
Persistent link: https://www.econbiz.de/10005787824
We propose a wild bootstrap procedure for linear regression models estimated by instrumental variables. Like other bootstrap procedures that we have proposed elsewhere, it uses efficient estimates of the reduced-form equation(s). Unlike them, it takes account of possible heteroskedasticity of...
Persistent link: https://www.econbiz.de/10005698050
White (1980) marked the beginning of a new era for inference in econometrics. It introduced the revolutionary idea of inference that is robust to heteroskedasticity of unknown form, an idea that was very soon extended to other forms of robust inference and also led to many new estimation...
Persistent link: https://www.econbiz.de/10009024918