Showing 1 - 10 of 83
As I document using evidence from a journal data repository that I manage, the datasets used in empirical work are getting larger. When we use very large datasets, it can be dangerous to rely on standard methods for statistical inference. In addition, we need to worry about computational issues....
Persistent link: https://www.econbiz.de/10013254704
As I document using evidence from a journal data repository that I manage, the datasets used in empirical work are getting larger. When we use very large datasets, it can be dangerous to rely on standard methods for statistical inference. In addition, we need to worry about computational issues....
Persistent link: https://www.econbiz.de/10012815681
We provide new and computationally attractive methods, based on jackknifing by cluster, to obtain cluster-robust variance matrix estimators (CRVEs) for linear regres- sion models estimated by least squares. These estimators have previously been com- putationally infeasible except for small...
Persistent link: https://www.econbiz.de/10014451087
We study cluster-robust inference for binary response models. Inference based on the most commonly-used cluster-robust variance matrix estimator (CRVE) can be very unreliable. We study several alternatives. Conceptually the simplest of these, but also the most computationally demanding, involves...
Persistent link: https://www.econbiz.de/10015051838
For linear regression models with cross-section or panel data, it is natural to assume that the disturbances are clustered in two dimensions. However, the finite-sample properties of two-way cluster-robust tests and confidence intervals are often poor. We discuss several ways to improve...
Persistent link: https://www.econbiz.de/10015051864
Despite much recent work on the finite-sample properties of estimators and tests for linear regression models with a single endogenous regressor and weak instruments, little attention has been paid to tests for overidentifying restrictions in these circumstances. We study asymptotic tests for...
Persistent link: https://www.econbiz.de/10010368288
When there are few treated clusters in a pure treatment or difference-in-differences setting, t tests based on a cluster-robust variance estimator (CRVE) can severely over-reject. Although procedures based on the wild cluster bootstrap often work well when the number of treated clusters is not...
Persistent link: https://www.econbiz.de/10011939455
We propose several Lagrange Multiplier tests of logit and probit models, which may be inexpensively computed by artificial linear regressions. These may be used to test for omitted variables and heteroskedasticity. We argue that one of these tests is likely to have better small-sample...
Persistent link: https://www.econbiz.de/10011940421
We examine several modified versions of the heteroskedasticity-consistent covariance matrix estimator of Hinkley and White. On the basis of sampling experiments which compare the performance of quasi t statistics, we find that one estimator, based on the jackknife, performs better in small...
Persistent link: https://www.econbiz.de/10011940422
Non-nested hypothesis tests provide a way to test the specification of an econometric model against the evidence provided by one or more non-nested alternatives. This paper surveys the recent literature on non-nested hypothesis testing in the context of regression and related models. Much of the...
Persistent link: https://www.econbiz.de/10011940423